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Abstract

There is an active debate among economists on the value of using clean energy subsidies
to address climate change. However, the models used to inform this debate have a
common simplifying assumption: the preferences of the government are kept constant
over time. In reality, control of the government often rotates between parties with very
different policy preferences. This paper finds that adding turnover in party control of
the government can have significant implications. Specifically, when the two parties
are sufficiently polarized, the party more concerned about the environment (”the green
party”) finds it optimal to subsidize irreversible investments in clean energy, even when
carbon taxes are available and can be placed at any level. We then provide quantitative
evidence on the green party’s optimal subsidy using two approaches: sufficient statistic
estimation and a calibration exercise. The results suggest that the optimal subsidy is
quantitatively significant, between 5% and 17% of the cost of investment. Furthermore,
if the green party naively uses just a carbon tax, clean investment is 34% lower than
when they use their optimal subsidy.

∗I thank Joe Battles, Leonardo Bursztyn, Michael Dinerstein, Wioletta Dziuda, Mikhail Golosov, Ryan
Kellogg, Ethan Bueno De Mesquita, Ishan Nath, James Robinson, and seminar participants at the University
of Chicago Economics Department and Harris School of Public Policy for helpful feedback. All errors are
my own.

https://drive.google.com/file/d/1YATsv6gxg-1EK-wyKcc1VqQ2f9m4vupf/view?usp=sharing


1 Introduction

Textbook economic models suggest that the optimal climate policy is a pigouvian tax (i.e. a

carbon tax). While carbon taxes are fairly common in reality, many countries’ climate plans

have instead relied heavily on clean energy subsidies. Perhaps motivated by this disconnect,

there is an active debate among economists on the relative merits of subsidies vs carbon

taxes1.

This paper contributes to that policy debate by relaxing a standard assumption: that

the preferences of the government are constant over time. Instead, I use a model where

control of the government rotates between two parties who may disagree on the size of the

externality from carbon emissions. I find that if the parties’ valuations are identical, then

the optimal policy only involves a carbon tax, as in the textbook model. However, if the

parties’ valuations of the externality differ, then the more environmentally-conscious party

(the green party) finds it optimal to subsidize clean energy investments rather than to rely

exclusively on carbon taxes. The intuition is that clean investment today crowds out future

polluting investments that would be made under a less-environmentally-conscious party (the

brown party), and this crowd-out benefit is not internalized by the private sector.

We use a model with two types of energy, green and brown, which are substitutes in

consumption. Production of each type of energy requires a specialized type of capital (i.e.

power plants). Furthermore, we assume that green energy only requires capital2 and that

investment is irreversible. These assumptions imply that once green capacity is built, it

produces electricity at zero marginal cost, so it will continue to produce electricity throughout

its lifetime, regardless of the carbon tax level. This is what drives the result that the green

party can reduce future carbon emissions through increasing green investment.

The model has perfect competition, and the only market imperfection is from carbon

emissions. This is what guarantees the textbook result that if one party has control forever,

their optimal policy is just a carbon tax.

When considering cases with turnover, we make election outcome probabilities exogenous,

which allows us to isolate the effects of party turnover from any effects due to electoral

competition. We consider two versions of the model. First is a “moment of opportunity”

version where there’s only one election. The green party is in charge in the first period, but

if they lose the second period election then they lose power forever. This model is a useful

starting point for building intuition, and it allows for more general functional forms. Next

1. See the literature review section below.
2. This assumption is motivated by the high capital intensity of solar and wind power. In 2022, capital

costs represent 73% and 79% of the levelized cost of new wind and solar plants, respectively (Nalley and
LaRose 2022).

1



we look at the ”perpetual turnover” version of the model where there is an election in every

period. While this model requires more functional form restrictions, it allows for a more

realistic calibration exercise.

Both models provide the same sufficient statistic for the green party’s optimal subsidy,

which depends on a few objects: the discount factor, the extent of polarization between the

two parties, the marginal cost of green energy, and how much increased green investment

crowds out future emissions. These objects can be estimated from existing empirical studies.

By plugging these estimates into the sufficient static formula, we find an optimal clean

investment subsidy of between 5 and 18%. This is a relatively large subsidy. For context,

the base level of the clean investment subsidy in the Inflation Reduction Act is 6%3.

While the sufficient statistic approach has the advantage of being transparent and less

dependent on functional forms, it comes at the cost of relying on local estimates of endoge-

nous objects. To address this concern, we also use a structural approach where we calibrate

the full model. This requires specifying the full cost and demand functions for energy. In

the baseline calibration, we find a subsidy of between 5 and 13%, only slightly lower than

the results from the sufficient statistic approach.

The calibrated model also allows us check what would happen if the green party were

to naively use their no-turnover optimal policy (that is, if they were to use just a carbon

tax). We find that this would lead to significant under-investment from the green party’s

perspective. Specifically, green investment would be about 34% lower than their optimal

level.

What about the behavior of the brown party? First, note that our model is asymmetric:

in the baseline case, we assume that capital does not depreciate and that the initial stock of

brown capital is high. This makes it so that the brown party has no incentive to subsidize

brown capital investment4. Next, one may think that the brown party would benefit from

taxing green investment. We don’t find that in any version of the model. Instead, we find

that in some cases the brown party wants to subsidize green investment5. The intuition is

3. In the Inflation Reduction Act, the subsidy increases to 30% if the investment meets prevailing wage and
apprenticeship requirements, and up to 50% if it relies on American made products and is located in an envi-
ronmental justice community. Many of the apparent goals of this policy (i.e. protectionism, compensating in-
terest groups) are outside of our model. The key point is just that our model predicts an optimal subsidy that
is roughly in line with what is observed in practice. Source: https://www.energy.gov/eere/water/inflation-
reduction-act-tax-credit-opportunities-hydropower-and-marine-energy

4. Intuitively, there is already an excess amount of brown capital in the economy, so further brown
investment has no impact on future production decisions.

5. This result does not say that the brown party wants more investment with turnover than they want
without turnover. In our model, they want the same level of investment in either case. Without turnover,
that level of investment can be implemented with just a carbon tax. With turnover, they need to use a
subsidy.
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that since firms expect large investment subsidies under a future green government, they

significantly reduce investment under the brown party. To counteract this, the brown party

uses a subsidy. In our calibration exercise, their optimal subsidy is 60% as large as the green

party’s.

1.1 Literature Review

As was mentioned above, there is an active debate among economists on the merits of clean

energy subsidies vs carbon taxes. A common argument against subsidies, which is present in

my model, is that they do not provide proper incentives to conserve energy. By lowering the

cost of energy, subsidies lead to increased energy consumption, which is the opposite of the

efficient decrease in consumption caused by a carbon tax. Related arguments say that clean

energy subsidies do not give the proper incentives to phase out relatively high emissions

sources like coal instead of relatively low-emissions sources like natural gas (Borenstein and

Kellogg 2023). Finally, subsidies must be financed with distortionary taxation, whereas the

revenue from carbon taxes can be used to reduce distortionary taxes (see Jorgenson et al

2013). Economic arguments in favor of subsidies include the idea that the electricity market

has large mark-ups (Kellogg and Borenstein 2023) and that there are positive externalities

from clean energy due to learning-by-doing (see Rodrik 2014 for an example). This paper

contributes to this literature by introducing a new mechanism which may make subsidies

optimal6.

On the political economy side, this paper relates to a literature going back to Persson

and Svensson (1989) (see Persson and Tabellini (2002) for a more detailed review). Most

of this early literature focused on debt accumulation, and it was primarily theoretical. In

environmental economics specifically, there are a few papers looking at government turnover,

but none of them focus on the choice of carbon taxes vs subsidies for clean energy invest-

ment. Hochman and Zilberman (2021) use a model where the government can only use

taxes, whereas Watten (2021) uses a model where the government can only use subsidies.

Schmitt (2014) works almost exclusively with social planner models that don’t decentralize

6. In light of all the existing arguments, there does not seem to be a consensus on this topic. In a 2017 IGM
poll of expert economists, 18% of respondents believed that subsidies were more efficient policies than carbon
taxes, 60% stated that carbon taxes were more efficient, and 22% were uncertain. In written responses to the
poll, many economists question existing arguments in favor of subsidies. No one mentions the mechanism
highlighted in this paper. Source: https://www.kentclarkcenter.org/surveys/energy-sources/
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the optimal policy in terms of taxes and subsidies78. Finally, Ulph and Ulph (2013) use a

two period model where governments can subsidize a discrete clean energy R&D project,

and they show that a subsidy is optimal for the green party when there’s turnover. While

their model contains a very similar mechanism, our model looks at subsidies for clean energy

capital investment and has significantly more general empirical exercises.

The rest of the paper proceeds as follows: first we present the setup of the model and

the results for the case where there’s no turnover. Next, we present theoretical results for

the moment of opportunity case, where power only changes hands once. We then provide an

estimate for the sufficient statistic for the optimal subsidy. Finally, we present theoretical

and calibration results for the perpetual turnover version of the model, where elections occur

in every period.

2 Model Setup

2.1 Technology

There are two types of energy, brown (Eb) and green (Eg), which are perfect substitutes in

consumption. Green energy is produced with only capital9 and has a strictly increasing and

strictly concave production function F (Kt). Brown energy is produced with only non-durable

inputs (e.g. fuel)10 and has a constant marginal cost of production MC.

We assume for tractability reasons that capital does not depreciate over time11. Invest-

ments xt immediately add to the capital stock according to the following law of motion:

Kt = Kt−1 + xt. Importantly, investment is fully irreversible (xt ≥ 0).

Carbon emissions in each period Ct are proportional to brown energy production Ct =

γEbt. Green energy production does not produce carbon emissions.

7. This is an important difference. In our baseline model the green party’s optimal amount of investment is
identical with or without government turnover. However, their way of implementing that level of investment
with tax policy is significantly different with turnover. So, if we only worked with social planner models
and didn’t consider the decentralized implementation, we would be left with the misleading conclusion that
government turnover is irrelevant for optimal policy.

8. In Schmitt (2014)’s two period model, they point out that subsidies are needed to decentralize the
optimal policy. However, in their infinite horizon model and their quantification section, they only look at
the planner solutions.

9. This assumption, while made for tractability reasons, is not too far from reality. In 2022, capital costs
represent 73% and 79% of the levelized cost of new wind and solar plants, respectively (Nalley and LaRose
2022).
10. In appendix A.2, we show that this assumption can be micro-founded in a model where brown energy

requires capital, but where the initial stock of brown capital is large enough that there is excess brown
capacity available. Empirical evidence suggests that this is a reasonable approximation.
11. Empirically, power plants are long-lived assets, with a lifespans of between 25-50 years (Rhodes et al

(2017)). This translates to a depreciation rate of 2% to 4% per year.
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2.2 Preferences and Consumer Problem

Following Kellogg and Borenstein (2023), we use a partial equilibrium model of the electricity

sector12. The value of electricity consumption for a representative consumer at time t is given

by v(Kgt + Ebt). v is increasing and strictly concave. v′(·) satisfies limx→∞v′(x) = 0 and

limx→0−v
′(x) → ∞.

There is a representative consumer who acts as a price taker. Prices at time t are

conditional on the history of election outcomes ht. The representative consumer problem is

to choose energy consumption E(ht) for each time t and history of election outcomes ht
13 to

maximize consumer surplus:

∞∑
t=1

∑
ht∈Ht

Π(ht)β
t−1(v(E(ht))− p(ht)E(ht))

where p(ht) is the price of energy, Ht is the set of possible histories at time t, and Π(ht) is

the probability of ht being realized.

The solution to this problem is to set Et to satisfy v′(E(ht)) = p(ht) for all ht. Thus,

v′(E) gives the inverse demand for energy andD(p) ≡ v′−1(p) is the demand curve for energy.

2.3 Firm Problem

A representative firm, taking prices p(ht), carbon taxes τ(ht), and investment subsidies s(ht)

as given, chooses ({x(ht)},{K(ht)}, {Eb(ht)}) to maximize expected profits:

∞∑
t=1

∑
ht∈Ht

Π(ht)β
t−1((F (K(ht)) + Eb(ht))p(ht)︸ ︷︷ ︸

Revenue

− (1− s(ht))x(ht)− (MC + τ(ht)γ)Eb(ht)︸ ︷︷ ︸
Cost

)

Subject to the law of motion and irreversible investment constraints for all ht:

K(ht) = K(ht−1) + x(ht)

x(ht) ≥ 0

where the exogenous initial capital stock K0 is zero.

12. In appendix A.1, we show that this partial equilibrium model is equivalent to a general equilibrium
model with quasi-linear utility and production
13. In the full control case, there’s only one possible history at every period in time. In moment of

opportunity case, the history is simply a binary variable for any t ≥ 2, specifying who won the election at
the beginning of period 2.
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2.4 Competitive Equilibrium

A competitive equilibrium is a set of quantities ({x(ht)}, {K(ht)}, {Eb(ht)}, {E(ht)}), prices
({p(ht)}, and tax rates ({τ(ht)}, {s(ht)}) which solve the firm problem, solve the consumer

problem, and satisfy the market clearing conditions Eb(ht) + F (K(ht)) = E(ht) for all ht.

2.5 Party Social Welfare Functions

The two parties have identical payoffs except for their valuation placed on the externality

from emissions. Both are interested in maximizing total surplus, inclusive of climate damages

from carbon emissions. The green party and the brown party value the externality from a

unit of carbon emissions at dg and db, respectively, with dg > db. Party j’s utility is given

by:
∞∑
t=1

∑
ht∈Ht

Π(ht)β
t−1(v(F (K(ht)) + Eb(ht))︸ ︷︷ ︸

Consumption Value

−x(ht)−MCEb(ht)︸ ︷︷ ︸
Cost

− djγEb(ht)︸ ︷︷ ︸
Externality

)

Note that taxes and subsidies do not appear in this formula, since we assume that lump

sum taxes are available (see the general equilibrium model in appendix A.1 for details).

We do not take a stance on which party has the “correct” social welfare function. The

purpose of the model is to analyze the (realistic) case where the two parties disagree about

the size of the externality.

2.6 Tax Instruments

The party in power in period t can use two tax instruments: carbon taxes τt and green

energy investment subsidies st. As we’ll see, these instruments turn out to be sufficient to

implement each party’s optimal allocation as a competitive equilibrium.

3 No Turnover Case

3.1 Solution Concept

As a baseline, we’ll first look at the textbook case, where one party is in charge in every

period. Following standard practice, we’ll solve for that party’s optimal policy in two steps:

first, solve the planner problem to find the optimal allocation, then find the tax policy which

decentralizes that optimal allocation as a competitive equilibrium.

The planner problem for party j is to choose an allocation ({xt}, {Kt}, {Ebt}, {Et}) to
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maximize their social welfare function:∑
t

βt−1(v(F (Kt) + Ebt)︸ ︷︷ ︸
Consumption Value

−xt −MCEbt︸ ︷︷ ︸
Cost

− djγEbt︸ ︷︷ ︸
Externality

)


Subject to the law of motion and irreversible investment constraints for all t:

Kt = Kt−1 + xt

xt ≥ 0

Note that there is no implementability constraint here. We are assuming that the solution

to this planning problem can be implemented with carbon taxes and investment subsidies.

This assumption is later verified in theorem 2.

We make the following assumptions on parameter values, which guarantee that both

parties use a positive amount of both types of energy in their no-turnover planner solution:

Interior Assumptions:

1. F ′(0)(MC + γdb) > 1− β

2. F ′(F−1(D(MC + γdg)))(MC + γdg) < 1− β

The first of these guarantees that both parties use some green energy in their no turnover

solution. The second guarantees that both parties use some brown energy in their no turnover

solution.

3.2 Results

First, we characterize the planner solution for each party.

Theorem 1: Party j’s no turnover solution has the following features:

1. The capital stock in each period is equal to a constant K∗
j , which is the unique solution

to the following FOC: (MC + γdj)F
′(K∗

j ) = 1− β

2. Investment is positive in the first period (and equal to K∗
j −K0) and zero in all future

periods

3. Brown energy production is constant in all periods and is equal to D(MC + γdj) −
F (K∗

j ) > 0
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So, the planner immediately makes enough investment to bring the capital stock up to

its steady state level, K∗
j . Because there’s no depreciation, investment in all future periods

is zero. Brown energy production is constant and positive in each period.

Next is the familiar result that to implement this optimal allocation, the party in power

just needs to use a pigouvian tax on carbon emissions.

Theorem 2: Party j’s no-turnover planner solution can be implemented as a competitive

equilibrium with a carbon tax equal to dj and a subsidy equal to zero in every period.

Furthermore, theorem 3 below states that there is no implementation of the optimal

allocation that involves positive subsidies:

Theorem 3: There is no tax policy ({τt}, {st}) which implements party j’s no turnover

solution and has st > 0 for any t

To see why this result holds, consider the planner and the firm’s first order conditions

for investment xt, evaluated at the planner solution:∑
t′

βt′−1v′(E∗
bt′ + F (K∗

t′))F
′(K∗

t′) = 1

∑
t′

βt′−1v′(E∗
bt′ + F (K∗

t′))F
′(K∗

t′) ≤ 1− st

The only way for these to both hold (which they must if st is to implement the planner

allocation) is for st ≤ 014. If positive subsidies were used, then firms would invest in green

energy to the point where the social marginal benefit is greater than the social marginal cost

(from the perspective of party j).

4 Moment of Opportunity Model

Now we add turnover into the model. The green party is in power in period 1. At the

beginning of period 2, there’s an election which the green party wins with probability θ.

Whoever wins that election is in charge for all t ≥ 2.

Whichever party wins the election has full control from period 2 on, so their optimal

policy is to just use a carbon tax, like in the previous section (this is formalized in theorem

4). In period 1, however, the green party’s decision problem is different since they recognize

14. For t = 0, the firm FOC must hold with equality since positive investment is made in that period, which
means that s1 = 0 in any tax policy which implements the planner allocation. For t > 0, no investment is
made, so st could be strictly negative (an investment tax) and still implement the planner allocation.
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that they may lose power. Theorem 5 pins down their optimal allocation, while theorem 6

establishes that they now want to use a positive clean investment subsidy instead of just a

carbon tax.

4.1 Solution Concept with Turnover

Now we examine the “moment of opportunity” case, where the green party is in power

in the first period, but then loses power forever with probability θ. Following the public

finance literature15, our solution concept in this case is analogous to the no turnover case.

First, we find the equilibrium allocation by solving for the subgame perfect equilibrium

of the “social planner game”, where the party in power in each period directly chooses

that period’s allocation. Next, we find tax policies for each party which decentralize the

equilibrium allocation as a competitive equilibrium.

The idea behind this solution concept is to analyze settings where governments have a

large enough range of policy instruments available to achieve any allocation (this includes

tax instruments, but also quantity setting instruments such as cap and trade policies). So,

to pin down the equilibrium allocation, we can first analyze a model where the party in

power in each period directly chooses that period’s allocation. We then want to focus on

the specific case where parties choose to use taxes and subsidies, so we solve for the tax and

subsidy policies which implement the equilibrium allocation.

4.2 Turnover Results

First, we characterize the equilibrium strategy for the party who wins the second period

election. This is easy to solve for, since from period 2 on the game collapses to the no-

turnover planner case considered in the previous section. The difference is that instead of

the capital stock starting at zero, it now starts at K1, the capital stock inherited from the

first period:

Theorem 4: In any subgame perfect equilibrium, the party j who wins the period 2

election chooses the following allocation, conditional on the amount of capital inherited from

period 1 K1:

1. Kt = max{K∗
j , K1} for all t ≥ 2

2. x2 = max{0, K∗
j −K1}

3. xt = 0 for all t > 2

15. See Farhi and Werning (2008), and the references cited therein, for examples.
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4. Ebt = max{0, D(MC + γdj)− F (Kt)} for all t ≥ 2

The first three parts of theorem 4 state that the party who wins the second period election

sets capital to their no-turnover optimal level K∗
j if feasible. If they inherit K1 > K∗

j , then

K∗
j isn’t feasible due to the irreversible investment constraint, so they instead invest nothing

in all future periods and keep the capital stock at K1.

The fourth part of theorem 4 pins down the level of brown energy production. Since

brown energy has constant marginal costs, optimal brown energy production for party j is

simply given by the difference between demand at the social marginal cost D(MC + γdj)

and the supply of green energy F (Kt) (if that difference is negative, then brown energy

production is zero).

Theorem 4 leads to an important follow up result:

Corollary 1: Let K̄ equal the unique solution to D(MC + γdj) − F (K̄) = 0. If K1 ∈
[K∗

j , K̄), then dEbt

dK1
= −F ′(K1) < 0 for all t ≥ 2

In other words, corollary 1 says that if K1 is above party j’s optimal level but not high

enough to completely crowd out brown energy production, then a marginal increase in K1

crowds out F ′(K1) units of brown energy production in period 2 on. So, the party in charge

in period 1 can reduce future emissions by increasing period 1 investment. This crowding

out effect is what leads to the result that the green party wants to subsidize green investment

in the first period.

The following result characterises the on-path equilibrium allocation:

Theorem 5: There is a unique subgame perfect equilibrium allocation with the following

characteristics on the equilibrium path:

1. In period 1, the green party sets K1 to K∗
g and Eb1 to D(MC + γdg)− F (K∗

g )

2. In period 2 on, the party in power j sets Kt = K∗
g , xt = 0, and Ebt = D(MC + γdj)−

F (K1) for all t

So, the green party immediately invests up to their full control optimal level K∗
g . If they

win the election in the second period, they keep the capital stock at that optimal level. If

the brown party wins the second period election, they also keep the capital stock at K∗
g ,

since they are bound by the irreversible investment constraint.

It may seem surprising that the green party’s equilibrium level of investment is the same

in the case with turnover as it was in the no-turnover case. As corollary 1 implies, in the
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turnover case marginal investment has the additional benefit of crowding out future emis-

sions, so why wouldn’t the green party want to invest more in that case? It’s because there’s

a countervailing force: with turnover the expected marginal benefit of energy consumption

in future periods is lower, since there’s a chance that the brown party will gain power and

increase brown energy production. This force reduces the marginal benefit of investment for

the green party. In this version of the model with constant marginal costs of brown energy,

the two forces exactly cancel out, which makes the green party want to choose the same level

of investment in either case16. This result may then lead to the mistaken conclusion that

turnover doesn’t matter for climate policy. However, as the next two results show, turnover

does make a difference for optimal tax policy.

Theorem 6: The unique subgame perfect equilibrium allocation can be implemented as

a competitive equilibrium with the following tax policies:

1. Whenever party j is in power, they use a carbon tax equal to dj

2. From period 2 on, whichever party is in power uses no investment subsidies

3. In period 1, the green party uses a positive investment subsidy equal to θ( 1
1−β

)(dg −
db)γF

′(K∗
g )

The first part of theorem 6 is straightforward. Just like in the case with no turnover, the

optimal level of brown production can be reached with a carbon tax equal to the size of the

externality.

The second part of theorem 6 is also unsurprising. From the second period on, whichever

party is in power is back to the no turnover setting, where subsidies are not optimal.

The third part of theorem 6 establishes that, unlike in the case with no turnover, it

can now be optimal for the green party to subsidize green investment in the first period.

The result below strengthens this, by establishing that the only way for the green party to

implement their allocation is to use a positive subsidy in the first period:

Theorem 7:Any tax policy that implements the subgame perfect equilibrium allocation

has the following feature: In period 1, the green party uses a positive investment subsidy

equal to θ( 1
1−β

)(dg − db)γF
′(K∗

g )

16. In appendix A.3, we show a version of the model with upward sloping marginal costs of brown energy.
In that case, it’s ambiguous whether the green party invests more or less when there’s turnover vs when
they have control forever, as it isn’t guaranteed that the two countervailing forces will perfectly cancel out.
In this version of the model, you still get the result that the green party uses a positive investment subsidy
with turnover and no investment subsidy without turnover, even in cases where they want to invest less with
turnover than they do without turnover
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To build intuition behind this result, suppose that the green party naively used just a

carbon tax equal to dg (their no turnover optimal policy). In the no turnover case, this is

enough to generate the efficient amount of investment K∗
j . In that case, firms expect brown

energy to be expensive now and forever, so they find it optimal to immediately make large

investments in green energy. Things are different when we add turnover. In that case, firms

expect that, with probability θ, carbon taxes and energy prices will be much lower in the

future. So it becomes optimal for them to invest less than K∗
g in the first period. To get

around this under-investment issue, the green party can use an investment subsidy, which

gets firms to again invest K∗
g in the first period.

An alternative way the green party could try to stimulate first period green investment

is to use a carbon tax above their valuation of the externality dg. In some cases, this can

be enough to implement their optimal level of investment K∗
g . However, this can never

implement their full optimal period 1 allocation because it will induce underproduction of

brown energy.

To get intuition behind the exact expression for the optimal subsidy, let’s consider the

green party’s first order condition for investment at the equilibrium allocation, which can be

written in the following way:

p1F
′(K∗

g ) +
1

1− β
(1− θ)p2(g)F

′(K∗
g ) +

1

1− β
θp2(b)F

′(K∗
g ) +

1

1− β
θγ(dg − db)F

′(K∗
g )︸ ︷︷ ︸

Crowd-out term

= 1

where p1 = p2(g) = MC+dg (the price of energy under the green party) and p2(b) = MC+db

(the price of energy under the brown party). The firm FOC is similar:

p1F
′(K∗

g ) +
1

1− β
(1− θ)p2(g)F

′(K∗
g ) +

1

1− β
θp2(b)F

′(K∗
g ) = 1− s1

The first three terms on the left hand side are the same for both the green party and the

firm. These represent the marginal revenue that additional first period investment would

create. The difference is that the green party’s FOC includes an additional term on the left

hand side which captures the marginal benefit of crowding out future emissions under the

brown party. This crowding out term is not internalized by firms because carbon taxes in the

event that the brown party gains power are equal to γdb rather than γdg. To make the two

FOCs hold (which they must for the tax policy to implement the equilibrium allocation),

the green party must set s1 =
1

1−β
θ(dg − db)γF

′(K∗
g ).

To get a more general and convenient expression for the optimal subsidy, first note that

we can write equilibrium carbon emissions if the brown party gains control as a function of

12



first period investment: Cb(x1) = γ(D(MC + γdb) − F (x1)). The optimal subsidy is then

given by:

s1 = − 1

1− β
θ(dg − db)

dCb(x1)

dx1

(1)

This expression turns out to also hold when the model is generalized to allow for upward

sloping marginal costs of brown energy (see appendix A.3), and we find the same expression

in the perpetual turnover version of the model.

From this expression for the optimal subsidy, we get a few other insights:

• The optimal subsidy is increasing in polarization (dg − db). If polarization is zero,

then we’re back to the no turnover case, where the preferences of the government are

constant over time and no subsidies are used.

• The subsidy only depends on how much investment today crowds out emissions un-

der future brown governments. Marginal investment today also crowds out emissions

under future green governments, but (from the green party’s perspective) there’s no

externality from that because emissions under future green governments are correctly

priced.

Finally, we would like to point out that the irreversibility constraint plays a key role here,

as a the theorem below shows:

Theorem 8: If investment is fully reversible, then there is a unique equilibrium allocation

and any tax policy which implements that allocation involves:

1. Each party j uses a carbon tax equal to dj whenever they’re in power

2. Investment subsidies are always equal to zero

So, if investment is fully reversible, then we’re back to the textbook case where subsidies

are suboptimal. In this case, our optimal subsidy formula above still holds, but marginal first

period investment has no impact on future emissions (dCb(K1)
dx1

= 0), since future governments

can simply reverse the investment. So, regardless of other parameter values, the optimal

subsidy is always zero with fully reversible investment. Although fully reversible investment

is a common assumption for tractability purposes, we consider it to be very unrealistic, as

it implies that an existing wind or solar farm can be taken apart and sold to recover the

original cost of building it.
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5 Estimating the sufficient statistic

This takes us to our first method for quantifying the optimal subsidy: estimating the quan-

tities in the sufficient statistic formula (equation 1).

First, we’ll rewrite equation 1 in a way that can be directly estimated from the data.

As was noted earlier, we can write carbon emissions under the brown party from period 2

on as a function of x1: Cb(x1) = γ(D(MC + γdb) − F (x1)). Since x1 is directly related

green energy production from period 2 on (x1 = F−1(Eg)), we can also write future carbon

emissions as a function of future green energy production: Ŵb(Eg) = γ(D(MC + γdb)−Eg.

Taking derivatives, we find:
dCb

x1

= −F ′(x1)
dŴb

dEg

Estimates of dŴb

dEg
(the change in emissions caused by increased green energy production)

already exist in the literature.

Next, define the marginal levelized cost of electricity as:

MLCOE(K) = (1− β)/F ′(K)

This corresponds to the marginal cost of producing a unit of green energy.

With these definitions, we can rewrite our expression for the optimal subsidy as:

s1 = −
βθ(dg − db)

dŴb

dEg

MLCOE(x1)
(2)

We estimate the quantities in equation 2 in the following way:

• The discount factor β is estimated from market interest rates. For the baseline esti-

mates, we use 5% a year (sensitivity analyses are done for 7% and 3% as well). Since

the period length is taken to be four years, this corresponds to β = .954 = .81

• θ is set to 1/2, based on the balance of power between the two US political parties in

the past 30 years.

• dg = $51 per ton of CO2, based on the Biden and Obama administrations’ official

social cost of carbon estimate1718.

17. Source: https://www.eenews.net/articles/federal-agencies-can-use-social-cost-of-carbon-for-now/
18. In the US, government agencies are required to do a cost benefit analysis when passing new regulations.

The president sets an executive-branch wide number, called the social cost of carbon, which is to be used by
agencies to value the externality from carbon emissions. So, these social cost of carbon numbers have real
consequences for policy decisions.

14



• db = $1 per ton of CO2, based on the Trump administration’s social cost of carbon

estimate.

• The crowd out effect dŴb

dEg
is taken from Abrell et al (2018). They give a range for the

the crowd out effect of .17 to .59 tons of CO2 per MWh of wind and solar production.

We report estimates for both the upper and lower bound.

• MLCOE(x1) is taken from Kellogg and Borenstein (2023), who estimate the full

marginal levelized cost of solar and wind in 2019 to be equal to $64 per MWh.

More details on these estimates are presented in the appendix A.4.

5.1 Results

Using these estimates, we find the optimal subsidy to be between 5 and 17%. For reference,

the clean investment subsidies included in the inflation reduction act are 30%, so while our

model finds a non-trivial subsidy, it is still lower than what is observed in practice.

A number of sensitivity analyses are shown in appendix A.4.3. These show that the

plausible range for the optimal subsidy is very large. The lowest value found in the sen-

sitivity analysis is an optimal subsidy of 4.3%. The highest value found is 66%. In light

of this wide range, we interpret these results as only suggestive evidence that government

turnover justifies large subsidies for the green party. We also think it highlights important

opportunities for future empirical work. More precise empirical estimates of the crowd out

effect dŴb

dEg
would greatly improve our understanding of how government turnover impacts

optimal climate policy.

One especially important sensitivity check to highlight involves the social cost of carbon

estimates. The Biden administration is currently using a temporary value of $51 per ton of

CO2. They are considering an updated value of about $191/ton of CO219. If this updated

number is used, then the optimal subsidy range rises to between 20 and 66%, which is in

line with the size of the subsidies in the Inflation Reduction Act.

Finally, a caveat to these estimates is that they are based on local empirical estimates

of the crowd out effect and of the marginal cost of green energy. As policies change, these

empirical objects change endogenously, which means that the local estimates used in this

exercise may not be accurate. This is a common issue with the sufficient statistic approach,

and it motivates the use of a more structural approach, such as our calibration exercise in

section 7.

19. Source: https://www.eenews.net/articles/epa-floats-sharply-increased-social-cost-of-carbon/
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6 Perpetual Turnover Model

The setup of the perpetual turnover model is the same, except now elections happen in every

period. We assume that each party has a 50% chance of winning each election.

In this more realistic setting, we end up finding the same behavior for the green party as

in the first period of the moment of opportunity model (Theorem 9 shows that they choose

the same level of investment. Theorem 10 shows that they choose the same subsidy). The

brown party’s behavior is different from the moment of opportunity model, as they now want

to subsidize green investment (see theorem 10 and the following discussion).

Before getting to the results, we first define our equilibrium refinement in this case.

6.1 Solution Concept

This version of the model has an issue that is common with many infinitely repeated games:

if the discount factor is low enough, the set of subgame perfect equilibria is extremely large.

For example, there’s a subgame perfect equilibrium where both parties use no green energy,

and if any party does use green energy, then the other party will punish them by producing a

very high amount of brown energy in the next period. To rule out these implausible-seeming

punishment equilibria, we need a stronger equilibrium refinement.

To motivate our equilibrium refinement definition, recall that in the full control case

and the moment of opportunity model, the parties’ optimal investment strategies had the

following form: xt = max{0, K∗
j − Kt−1}. That is, party j has some capital target K∗

j ; if

at any time t they inherit a capital stock below K∗
j , then they invest enough to bring the

capital stock up to K∗
j ; if they inherit a capital stock above K∗

j , then they invest nothing.

Our refinement proposed below requires that strategies have this same form:

Definition 1: A “History Independent Capital Target Equilibrium” is a Markov Perfect

Equilibrium where strategies satisfy the following condition:

• There exists some (Kb, Kg) such that whenever party j is in power, they set xt to

max{0, Kj −Kt−1}

The Markov Perfection requirement means that equilibrium strategies can only depend

on payoff relevant variables, which in this case is just the inherited level of capital Kt−1. This

rules out strategies which use brown energy production as a punishment for past behavior.

The requirement on investment behavior rules out strategies which use investment as a
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punishment for past behavior20. In what follows, we will refer to any History Independent

Capital Target Equilibrium as simply “an equilibrium”.

6.2 Results

Theorem 9: There is a unique equilibrium allocation with the following characteristics:

1. Whenever party j is in power, they set investment to max{0, K∗
j −Kt−1}

2. Whenever party j is in power, they set Ebt to D(MC + γdj)− F (Kt)

So, if the brown party gains power first, they raise the capital stock to K∗
b and keep it

there until the green party comes to power. Once the green party first gains power, they

raise the capital stock to K∗
g and it stays there forever.

Recall that K∗
j is party j’s capital target when they have permanent control of the

government. So, like in the moment of opportunity model, we find that each party sets a

capital target equal to their target in the no-turnover case. And, similar to the moment of

opportunity model, the theorem below says that to implement that capital target requires a

different tax policy than in the no-turnover case:

Theorem 10: Any tax policy which implements the equilibrium allocation as a competi-

tive equilibrium has the following characteristics:

• Whenever party j is in control, they use a carbon tax equal to dj.

• In the first period that the green party gains control, they use a subsidy s∗g equal to

(1/2)( β
1−β

)(dg − db)γF
′(K∗

g )

• In the first period, if the brown party has control, they use a subsidy equal to (1/2)β
1−(1/2)β

s∗g

There are a few things to notice about theorem 10. First, the green party’s behavior is

the same as their behavior in the first period of the moment of opportunity model. They

use both a carbon tax and a subsidy on green investment. The expression for the subsidy is

also identical, and the intuition is the same: Marginal investment today crowds out under-

taxed brown energy production under future brown governments. From the green party’s

perspective, this is a positive externality and thus investment should be subsidized.

20. We haven’t proven that there exist other Markov Perfect Equilibria other than the unique History
Independent Capital Target equilibrium. There’s a chance that any Markov Perfect equilibrium also has
history independent capital targets.
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A new thing here is the result that the brown party wants to subsidize clean investment.

To get intuition for this, consider first what happens when the brown party has permanent

control. In that case, the brown party finds it optimal to only use a carbon tax equal to db,

and firms respond by setting the capital stock to K∗
b . Now consider the case where there’s

turnover, and the brown party naively uses just a carbon tax equal to db in the first period.

Since firms expect investment to be subsidized by a future green government, they find it

optimal to invest less than K∗
b and wait until the green party comes to power to invest more.

According to theorem 9, the brown party still wants firms to invest K∗
b , so they get around

this underinvestment issue by using a subsidy21. Note, however, that the subsidy is still

smaller than the green party’s (with a discount factor of 5%, s∗b is about 60% as large as

s∗g)
22. Also recall that we assumed that the initial stock of green capital is zero. If the initial

stock is at or above K∗
b , then there’s no need for the brown party to use any subsidy since

their optimal level of investment is zero investment anyway.

Finally, note that theorem 8 only says that subsidies are positive for the green party in the

first period when they have control. What about the periods after that? In the equilibrium

allocation, after that period, no investment is made by either party. Since investment is

irreversible, this means that firms are at a corner solution in those periods, and so any

subsidy which is low enough to get them to invest zero can implement the equilibrium

allocation. They could implement the optimal allocation by using the same subsidy that

they used in the first period, but they could also implement it by using any subsidy level

below that. The same reasoning applies to why theorem 10 only pins down the brown party’s

optimal subsidy in the first period23.

7 Calibration

Now we calibrate the model to provide alternative estimates for the optimal subsidy and to

get policy counterfactuals.

21. Another way of looking at this: from the brown party’s perspective, investment under a future green
party has a negative fiscal externality due to it being subsidized. Investment today crowds out future
investment, which mitigates the negative fiscal externality, so investment today has a positive externality.
22. Preliminary evidence suggests that this result of a positive subsidy may not be robust to relatively

small changes in the game. For example, if investment doesn’t immediately add to the capital stock, but
instead increases it next period, then it’s ambiguous whether the brown party wants to tax or subsidize
green investment. However, even in that model, the mechanism driving the brown party to want to subsidize
investment is still present. There’s just another force pushing in the opposite direction which may turn out
to be stronger.
23. More formally:

Proposition 1: The equilibrium allocation can be implemented with party j using a carbon tax equal to dj
and an investment subsidy equal to s∗j whenever they’re in power.
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We assume a constant elasticity of demand function and a linear marginal cost function

for green energy24.

Values for parameters β, dg, and db are the same as in the sufficient statistic exercise.

Other parameters are calibrated in the following way:

• The demand elasticity is taken from the long run estimate in Deryugina et al (2020).

• The constant in the demand function is set to match 2022 levels of electricity demand.

• The parameters of the linear marginal cost function are taken from Borenstein and

Kellogg (2023).

• The emissions content of brown energy γ is set to match the crowd out effect from

Abrell et al (2018).

Details of these estimates are in the appendix A.5.

One key parameter estimate is the value of γ, the emissions content of brown energy. In

the baseline, we report results for γ = .18 and γ = .59 tons of CO2 per MWh. This value

was chosen so that the crowd out effect of increased green energy production (measured at

the laissez faire equilibrium) agrees with the upper and lower bound from Abrell et al (2018),

which is the same study that was used in the sufficient statistic estimation. An alternative

way to set γ is to use the average emissions content of non wind and solar energy in the US

economy. This leads to a value of .46 tons of CO2 per MWh, which is within our baseline

range25. In either case, the crowd out effect in the calibrated model agrees with the micro-

evidence. This is important since the sufficient statistic formula tells us that the crowd out

effect is a key determinant of the optimal subsidy.

7.1 Results

In the baseline calibration, we find that the green party’s optimal subsidy is between 5

and 13%. These bounds are slightly lower than what we found in the sufficient statistic

estimation. The reason for this discrepancy is that the sufficient statistic relied on local

estimates of the marginal cost of green energy around the laissez faire equilibrium. With

positive subsidies in place, the marginal cost of green energy rises, which reduces the optimal

subsidy.

24. See appendix A.5 for details of what these assumptions imply for the functional forms of v(E) and
F (K)
25. Average emissions content of non solar and wind energy is taken from Nalley and LaRose (2022)
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For the brown party, we find optimal subsidies of between 3% and 9%, suggesting that

government turnover can justify non-trivial subsidies even for the party who cares less about

climate change.

Figure 1 shows a key comparative static: the green party’s optimal subsidy as a function

of the amount of polarization26. We see that for low levels of polarization, subsidies are near

the full control level of zero. As polarization rises, subsidies rise to non-trivial levels.

Figure 1: The green party’s optimal subsidy as a function of polarization. With no polar-
ization, we get the textbook result that subsidies are not optimal. As polarization rises, the
optimal subsidy increases.

Appendix A.5.4 shows a number of sensitivity analyses. One important scenario to

highlight is if we set dg equal to the Biden Administration’s suggested social cost of carbon

number of $195/ton of CO2. In this case, the green party’s optimal subsidy is much larger,

between 14 and 39%.

The calibration exercise also allows us to check what would happen in the counterfactual

26. This figure uses γ = .3 tons CO2 per MWh, which makes the crowd out effect equal to the average
value in Abrell et al (2018). For every point on the graph, the average of the two party’s social costs of

carbon
dg+db

2 is held constant at d̄ = $26 per ton of CO2 (the average social cost of carbon in our baseline
estimate). As polarization σ increases, the two parties’ social costs of carbon become further apart:

dg(σ) = d̄(1 + σ)

db(σ) = d̄(1− σ)

σ = 0 gives the full control case, where the two parties have identical preferences. σ = 1 corresponds to the
extreme case where the brown party places no value on the externality and the green party places 2d̄. In
our baseline calibration, σ = .96.
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where the green party naively uses their no-turnover solution of just a carbon tax equal

to dg. For this exercise, we assume that the brown party also acts naively and uses their

no-turnover solution of a carbon tax equal to db.

The results are shown in figure 2 for the case where γ = .3. The first bar shows the steady

state level if the green party had full control and just used a carbon tax. This permanent

carbon tax is enough to get firms to invest up to the green party’s optimal level. The next

bar shows what happens if the green party naively follows that same policy when there’s

turnover. In this case, investment from firms is 29% lower, since they expect low carbon

taxes under future brown governments. The final bar shows what happens if there’s turnover

and the green party acts optimally (that is, if the green party uses the optimal policy of a

tax and subsidy). In that case they induce the same large amount of investment as in the

full control case.

Figure 2: The steady state capital stock in three scenarios. “Permanent carbon tax” is the
case where the green party has full control and acts optimally. “Temporary carbon tax” is the
case where there’s turnover and the green party naively uses just a carbon tax. “Temporary
subsidy and tax” is the case where there’s turnover and the green party uses their optimal
policy, which is a carbon tax and an investment subsidy. The y axis is measured relative to
the laissez faire level of capital.
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8 Conclusion

This paper makes a novel contribution to the debate over the value of clean energy subsidies.

Specifically, if control of the government rotates between parties with different levels of

concern about climate change, then the more concerned party finds it optimal to use clean

energy subsidies. This result relies on the assumption that investment is irreversible, so that

renewable plants built under the green party will remain operational under future brown

governments, and thus will crowd out future fossil fuel production.

The model gives a simple sufficient statistic formula for the optimal subsidy. The key

empirical objects that it depends on are the discount factor, the difference between the two

parties’ social costs of carbon, and the extent to which increased clean investment reduces

future carbon emissions. This both guides our quantification exercises, and (as is discussed

more below) suggests opportunities for future empirical work.

We use two methods to investigate whether the green party’s optimal subsidy is quanti-

tatively large. First, we estimate the objects in the sufficient statistic formula using existing

estimates in the literature. This has the advantage of being transparent and less dependent

on functional forms, but comes at the cost of relying on local estimates of endogenous ob-

jects. To address some of these concerns, our second method is to calibrate the full model. In

each case, the results suggest that the optimal clean energy investment subsidy is relatively

large, between 5% and 17%. The calibration exercise also gives results for the counterfactual

case where the green party naively uses just a carbon tax rather than a subsidy. In this

case, we find that this leads to large underinvestment in green energy relative to the optimal

level. In total, these results provide suggestive evidence that government turnover matters

quantitatively for optimal climate policy.

There are many opportunities for future work on this topic. First, the models presented

in this paper are still fairly stylized, and a number of assumptions could be relaxed to test

the robustness of the results. A major barrier to tractability in this paper is the large set

of subgame perfect equilibria in the perpetual turnover version of the model. To make that

case tractable, we made the assumptions of constant marginal cost of brown energy and of

zero depreciation. Perhaps another way around this issue is to use a finitely repeated game,

as in Schmitt (2012). In that case, there is a unique subgame perfect equilibrium even with

more general functional forms.

Next, the results in this paper suggest opportunities for future empirical work. Specif-

ically, more precise estimates of the impact of green investment on future emissions would

significantly reduce uncertainty about the green party’s optimal subsidy.

An interesting extension of the model would be to look at possible pareto improving

22



compromises between the two parties. For example, if the brown party agrees raise their

carbon taxes conditional on the green party lowering their subsidies, then both parties could

potentially be better off.

Finally, and more broadly, future work could use a similar model to examine whether

government turnover matters in other policy contexts. For example, previous empirical work

has found that trade policy reforms in developing countries are often reversed by future

governments (Rodrik 1992). Perhaps in this context a reform-minded political party would

find it optimal to subsidize irreversible investments in exporting sectors, rather than to just

lower trade barriers. Similar mechanisms may be at play for a wide variety of policy issues

on which political parties are polarized.
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A Appendix

A.1 General Equilibrium Microfoundation

Consider a general equilibrium economy with two consumption goods: energy Et and general

consumption yt. Consumer preferences are quasilinear in yt:

U({y(ht)}, {E(ht)}) =
∑
t

∑
ht

βt−1Π(ht)(yt + v(Et))

The technology for energy production is the same as in the body of the text. In each

period t, there’s a total endowment of labor equal to L, which can be used for consumption,

brown energy production, or investment according to the following constraint: yt+MCEbt+

xt = L.

The consumer problem is to choose an allocation {y(ht)}, {E(ht)} to maximize utility:∑
t

∑
ht

βt−1Π(ht)(yt + v(Et))

subject to the budget constraint:∑
t

∑
ht

βt−1Π(ht)py(ht)(y(ht) + p(ht)E(ht)− T (ht)) ≤ A

where T (ht) are transfers from the government and A is the expected present value of firm

profits.

Due to the quasilinear structure of preferences, all prices py(ht) must be constant in any

competitive equilibrium2728, so we can normalize them to 1 and simplify the constraint to:∑
t

∑
ht

βt−1Π(ht)(y(ht) + p(ht)E(ht)− T (ht) ≤ A

27. A competitive equilibrium in this GE economy is a set of quantities ({y(ht)}, {Eb(ht)}, {K(ht)},
{x(ht)}, {E(ht)}), prices {p(ht), and tax policies ({τ(ht)}, {s(ht)}, {T (ht)}) which satisfies:

1. The firm problem

2. The consumer problem

3. The market clearing constraint for all ht: Eb(ht) + F (K(ht)) = E(ht)

4. The government budget constraint for all ht: T (ht) = τ(ht)Eb(ht)− s(ht)x(ht)

28. Proof: The FOC for y(ht) is: 1 − λpy(ht) = 0, where λ is the lagrange multiplier on the budget
constraint. Since we have no nonnegativity constraint here, this FOC must hold with equality for all ht
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The constraint must hold with equality since utility is strictly increasing in y. We can

now rewrite the constraint as:∑
t

∑
ht

βt−1Π(ht)y(ht) =
∑
t

∑
h

tβ
t−1Π(ht)(p(ht)E(ht)− T (ht)

By plugging this constraint into the objective function, the consumer problem simplifies to:

max{E(ht)}
∑
t

∑
ht

βt−1Π(ht)(v(E(ht)− p(ht)E(ht))

which is identical to the consumer problem in the partial equilibrium model.

The firm problem is to choose an allocation ({y(ht)}, {Eb(ht)}, {K(ht)}, {x(ht)}) to

maximize expected profits:∑
t

∑
ht

βt−1Π(ht)(y(ht) + p(ht)(F (Kt) + Eb(ht))− γτ(ht)Eb(ht) + s(ht)x(ht))

Subject to the resource constraint, law of motion, and irreversibility constraints:

y(ht) +MCEb(ht) + x(ht) = L

K(ht) = K(ht−1) + x(ht)

xt ≥ 0

Using the first constraint to eliminate yt, and the firm problem simplifies to choosing an

allocation ({Eb(ht)}, {K(ht)}, {x(ht)}) to maximize:∑
t

∑
ht

βt−1Π(ht)(p(ht)(F (Kt) + Eb(ht))− (MC + γτ(ht))Eb(ht)− (1− s(ht))x(ht))

subject to the law of motion and irreversibility constraints. This is identicial to the firm

problem in the partial equilibrium case.

Finally, the social welfare for party j is:∑
t

∑
ht

βt−1Π(ht)(yt + v(Et)− γdjEb(ht))

Using the resource constraint to eliminate yt, this becomes:∑
t

∑
ht

βt−1Π(ht)(v(Et)− Eb(ht)− x(ht)− γdjEb(ht))
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which, again, is equivalent to party j’s social welfare function in the partial equilibrium

version of the model.

A.2 Microfoundation with Brown Capital

In this section we show that the assumption that brown energy production only requires

non-durable inputs can be microfounded in a model where the initial stock of brown energy

capacity is sufficiently large.

Consider a model where brown energy requires both nondurable inputs Lf and brown

capital Kf
29. The production function is leontief: Ebt = min{Kft/k, Lft/MC}, where k and

MC are the capital and labor requirements to produce a unit of brown energy, respectively.

Aside from that change, the setup of the model is the same as the baseline case.

Party j’s planner problem in the no-turnover case is now to choose an allocation ({xt},
{Kt}, {Ebt}, {xft}, {Kft} to maximize social welfare:∑

t

βt−1(v(F (Kt) + Ebt)− (MC + γdj)Ebt − xt − xft)

subject to the laws of motion, irreversibility constraints, and the capacity constraint for

brown energy:

Kt = Kt−1 + xt

Kf,t = Kf,t−1 + xf,t

xt, xft ≥ 0

Ebt ≤ Kbt/k

Intuitively, if the initial stock of brown capital is sufficiently large, then the capacity

constraint on brown capital won’t bind. In that case, there will be no reason to invest any

more in brown capital, and the solution will coincide with the case where brown energy only

requires nondurable inputs (that is, it will coincide with the baseline model). Below we show

this formally.

Let E∗
b ≡ D(MC + γdb) − F (K∗

b ) be the brown party’s no-turnover level of brown

production in the baseline model, as is defined in theorem 1. The following proposition

establishes that if the initial stock of brown capital is greater than K∗
b , then each party’s

no-turnover solution in the model with brown capital is identical to that in the baseline

model:

29. f is the subscript here since b is already used to denote the brown party
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Proposition A.3: If Kf0/k > E∗
b , then party j’s no turnover solution is to set xft = 0

and Kft = Kf0 for all t, while setting all other quantities to the same levels as in theorem 1.

Proof. The Bellman equation for this problem is:

V (K,Kf ) = maxK′,K′
f ,Eb

v(F (K ′)+Eb)−(MC+γdj)Eb−(K ′−K)−(K ′
f−Kf )+βV (K ′, K ′

f )

Subject to the constraints K ′ ≥ K, K ′
f ≥ Kf , Eb ≥ 0, and Eb ≤ K ′

f/k. Guess that the

policy function is to set K ′
f (K,Kf ) = Kf0, K

′(K,Kf ) = max{K∗
j , K}, and Eb(K,Kf ) =

max{0, D(MC + γdj) − F (K ′)}. This is consistent with the behavior in the proposition.

With this guess the value function doesn’t depend onKf and is identical to the value function

in the proof of theorem 1. Plugging this value function into the Bellman equation, we see

that all FOCs are uniquely satisfied at the policy function that we guessed.

Following similar steps, we can show that the equilibrium allocations in the moment of

opportunity model and the perpetual turnover model will also be the same as in the baseline

model.

So, as long as there is enough initial capital to meet the brown party’s demand for brown

energy (without any additional investment), then the behavior in the model with brown

capital is identical to the behavior in the baseline model.

Empirically, in 2022 there was enough installed fossil fuel capacity in the US to meet at

least 115% of US electricity demand, assuming that the plants ran at full capacity (Nalley

and LaRose (2022)). In practice, fossil fuel only provided 60% of US generation because

much of the capacity went unused. This suggests that it is reasonable to assume that there

is initially sufficient brown capital available in the economy to fully meet brown energy

demand without any new investment.

Note, however, that this result hinges on our assumption that capital does not depreciate

over time. While we believe this is a reasonable approximation to make as a first step (as

was noted above, the lifespan of fossil fuel plants is very long, between 30 and 50 years), we

think that relaxing this assumption presents a useful opportunity for future work.

A.3 Moment of opportunity model with upward sloping marginal

costs

In this section we relax the assumption that brown energy has constant marginal costs, and

show that this leads to the same sufficient statistic for the optimal subsidy.

29



The cost function for producing brown energy is c(Eb), which is increasing and convex.

The consumer problem is unchanged. The firm problem is now to choose an allocation

chooses ({x(ht)},{K(ht)}, {Eb(ht)}) to maximize expected profits:

∞∑
t=1

∑
ht∈Ht

Π(ht)β
t−1((F (K(ht)) + Eb(ht))p(ht)︸ ︷︷ ︸

Revenue

− (1− s(ht))x(ht)− c(Eb(ht))− τ(ht)γEb(ht)︸ ︷︷ ︸
Cost

)

Subject to the law of motion and irreversible investment constraints for all ht:

K(ht) = K(ht−1) + x(ht)

x(ht) ≥ 0

where the exogenous initial capital stock K0 is zero.

The definition of competitive equilibrium is unchanged.

Party j’s expected utility is now:

∞∑
t=1

∑
ht∈Ht

Π(ht)β
t−1(v(F (K(ht)) + Eb(ht))︸ ︷︷ ︸

Consumption Value

−x(ht)− c(Eb(ht))︸ ︷︷ ︸
Cost

− djγEb(ht)︸ ︷︷ ︸
Externality

)

Just as we did in the baseline model, here we make assumptions on parameter values

which guarantee that positive amounts of both types of energy are used in each party’s no-

turnover solution. First, define p0b as the equilibrium price if the brown party had permanent

control and green energy wasn’t available and p0b as the equilibrium price if the green party

had full control and brown energy wasn’t available30. The interior assumptions are then:

1. F ′(0)pb0 > 1− β

2. pg0 > c′(0) + γdg

As in the baseline model, let the function Cb(K1) give CSS
b as a function of the first

period capital stock, where CSS
b is the equilibrium level carbon emissions for t ≥ 2 in the

event that the brown party wins the second period election.

The following result establishes that we get the same sufficient statistic formula as in the

baseline model:

Theorem A.4 Take any subgame perfect equilibrium allocationA. Any tax policy which

implements the allocation A has the following feature: in the first period, the green party

uses a subsidy equal to θ 1
1−β

(dg − db)
dCb(K1)

dx1
.

30. Formally, first let Ẽb be the unique solution to v′(Ẽb) = c′(Ẽb)+ γdb. p0b ≡ v′(Ẽb). Similarly, let K̃ be
the unique solution to v′(F (K̃))F ′(K̃) = 1− β. pg0 ≡ v′(F (K̃g.
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A.4 Sufficient Statistic Estimation Details

A.4.1 Details on Abrell et al (2018)

To estimate how much increased green energy production reduces carbon emissions ( dW
dEg

),

we use estimates from Abrell et al (2018). This paper uses hourly variation in weather as a

source of exogenous variation in green energy production. The data is from Germany and

Spain from 2014-2015. There are a few caveats with applying these estimates to our setting:

• There are external validity concerns from using European results from eight years ago

to the present US context.

• Because this paper uses hourly variation, it is a short run analysis. Long run crowd

out effects could be different since long run demand and supply elasticities could be

different.

I would like to note, however, that estimates from have been used in a number of well-

cited policy papers as a measure of the impact of clean energy subsidies on emissions (see

Gillingham (2018) and Greenstone and Nath (2021)). So, it seems that this is the current

best available quasi-experimental evidence on the crowd out effect. As is mentioned in the

main text, further empirical research could improve on these estimates, which are important

not just for the question of the optimal subsidy under government turnover, but also the

more basic question of the impact of clean energy subsidies on carbon emissions.

The lower panel in table 1A shows the relevant estimates from Abrell et al (2017). They

give 12 different estimates of the crowd out effect, which vary in:

• The type of clean energy (wind vs solar)

• The country analyzed (Germany or Spain)

• Assumptions about how much reducing imports reduces emissions.

This third bullet point is the largest driver of heterogeneity in their estimates. Because they

are analyzing small countries (relative to the size of the US), increased green energy produc-

tion significantly reduces electricity imports. Abrell et al (2017) don’t directly have data on

how reducing these imports reduces emissions, so they consider three possible scenarios:

1. Reducing imports causes no reduction in emissions

2. Each MWh of reduced imports decreases global coal production by 1 MWh, which

reduces emissions by ≈ 1 ton of CO2.

31



3. Each MWh of reduced imports decreases global natural gas production by 1 MWh,

which reduces emissions by ≈ .4 ton of CO2.

As can be seen from figure 3, all of their estimates are within the range of .18 to .58 tons

of CO2 per MWh. The average of their 12 estimates is .3 tons of CO2 per MWh.

Figure 3: Crowd out estimates from Abrell et al (2017). The lower panel (starting with
the heading “Total Annual Carbon Offset”) gives the relevant 12 estimates of the crowd out
effect. Note that the units are kg of CO2 per MWh. Divide by 1000 to get this in units of
metric tons of CO2 per MWh.

A.4.2 Details on Borenstein and Kellogg (2023)

To estimate the marginal levelized cost of green energy, we use estimates from Borenstein and

Kellogg (2023). This paper has detailed cost data on fossil fuel plants. They estimate the

marginal cost of fossil fuel plants in 2019 to be $64 per MWh, and infer that the full marginal

cost of green energy must also be equal to $64 per MWh around the current equilibrium.

32



A.4.3 Sensitivity Analyses

Table A2 shows the optimal subsidy results for discount factors of 3 and 7 percent.

β = .954 β = .974 β = .934

Optimal Subsidy [5.4, 17.7] [5.9, 19.2] [5.0, 16.2]

Table A2. Sufficient statistic estimates for green party’s optimal subsidy with different levels

of β. Note that the β is equal to the annual discount factor raised to the fourth power, since

the period length is four years. Like in the main body of the text, the lower bound in the

intervals is for γ = .18 and the upper bound is for γ = .59 (taken from the upper and lower

estimates in Abrell et al (2017)

As was mentioned earlier, in light of new evidence on the damages from climate change

and on changes in capital markets, the Biden administration is considering increasing their

social cost of carbon by nearly a factor of 4, to dg = $190 per ton of CO2. Table A3 shows

how the results change if we set dg to that updated level and scale up db by the same factor.

Baseline Updated

Optimal Subsidy [5.4, 17.7] [20.1, 65.8]

Table A3. Sufficient statistic estimates for green party’s optimal subsidy with different values

for the parties’ social costs of carbon. The first column is for the baseline levels of dg = $51

and db = $1. The second column is for the updated levels of dg = $190 and db = $4.

A.5 Calibration Details

A.5.1 Details of Demand Function Calibration

We start by assuming a constant elasticity of demand function:

D(p) = Ap−ϵ

This implies an inverse demand function of:

v′(E) = (E/A)−1/ϵ
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There’s a small issue here. Since the inverse demand diverges at E = 0, if we try to directly

define v(E) =
∫ E

0
v′(x)dx, then v(E) doesn’t exist. To get around this, we use a piece-wise

function for v′(E):

v′(E) =

(E/A)−1/ϵ E ≥ α

(α/A)−1/ϵ E < α

where α is an arbitrarily small constant. These keeps v′(E) from diverging, so v(E) is well

defined. As long as α is smaller than K∗
b , the exact value that we pick won’t impact our

results.

To calibrate the demand elasticity ϵ, we use micro estimates from Deryugina et al (2020).

They use changes in local utility suppliers as a source of long run exogenous variation in

electricity prices. Their point estimate for the long run demand elasticity is -.27, with

standard errors of .04.

The parameter A in the demand function is set so that with laissez faire policies, the

equilibrium level of E equals total electricity consumption in 2022 times four (to account for

our period length of four years).

A.5.2 Details of Cost Function Calibration

Following Borenstein and Kellogg (2023), we assume a linear specification for the marginal

levelized cost of green energy:

MLCOE(Eg) = MEg + b

In words, this is the marginal cost, per period, of producing an additional MWh of green

energy each period.

We can find the total present value cost of providing Eg units of green energy by inte-

grating the marginal levelized cost and multiplying by 1
1−β

:

C(Eg) = (
1

1− β
)

∫ E

0
gMLCOE(x)dx = (.5∗MEg+bEg)/(1−β) = (.5∗M∗F (K)+b∗F (K))/(1−β)

where in the last step we plugged in Eg = F (K). We also know that the total present

value cost of producing F (K) units now and forever is just the investment cost K. Setting

these two equal to each other gives a quadratic equation, which we can solve to obtain the

following expression for F (K):

F (K) = (1/M)(b2 + 2(1− β)MK)1/2 − (b/M)
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Now, to calibrate M and b we use numbers from Borenstein and Kellogg (2023). Based

on engineering cost data, they estimate that the marginal cost of zero emission energy starts

at $64/MWh at 2019 levels of production and rises to $91/MWh if zero emission sources

provided 90% of total electricity generation in 201931. In 2019, wind and solar provided

368 million MWh. Assuming that all new zero emission electricity would come from solar

and wind (which is in line with projections from Nalley and LaRose (2022)), then for zero

emission sources to provide 90% of 2019 levels, wind and solar generation would have to rise

to 2528 million MWh/year. These values, combined with the baseline value for β, imply

that M = $1.26 ∗ 10−8/MWh2 and b = $59.40/MWh.

A.5.3 Finding the Optimal Subsidy

First, we check whether numerically the calibrated demand and cost functions satisfy the

interior assumptions from the baseline model setup. In the baseline case, they do, so the

green party’s optimal subsidy is just given by the expression in theorem 9:

s∗g = (1/2)(
β

1− β
)(dg − db)γF

′(K∗
g )

And K∗
g is the unique solution to the following FOC:

(MC + γdg)F
′(K∗

g ) = 1− β

Solving this for F ′(K∗
g ) and plugging it into the subsidy expression gives:

s∗g = (1/2)βγ(dg − db)/(MC + γdg)

This only depends on exogenous parameter values, so it can be used directly to find s∗g

For some specifications in the sensitivity analyses, the second interior assumption, listed

below, doesn’t hold:

F ′(F−1(D(MC + dg)))(MC + dg) < 1− β

In this case, the theorems 9 and 10 don’t apply. Instead, we introduce a new assumption,

which can be shown to hold in all of the specifications that we consider. First, define K∗∗

as the solution to following equation: v′(F (K∗∗)) = MC + γdb. For any capital stock at or

above K∗∗, the brown party finds it optimal to use no brown energy. Our new assumption

31. They also consider robustness checks where marginal cost at 90% of 2019 production is $70/MWh and
$110/MWh. We use these same numbers for the sensitivity analysis in table A7.
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is:

Assumption A.1:

v′(F (K∗∗))F ′(K∗∗)− 1 + (1/2)(
β

1− β
)(v′(F (K∗∗))F ′(K∗∗) + (MC + dg)F

′(K∗∗)) < 0

The following proposition pins down the value of the optimal subsidy in this case:

Proposition A1: When the first interior assumption and Assumption A.1 hold, then

there is a unique equilibrium allocation in the perpetual turnover game which has the following

features:

• The green party’s target capital level (the steady state level) Kg satisfies the following

condition:

v′(F (Kg))F
′(Kg)− 1 + (1/2)(

β

1− β
)(v′(F (Kg))F

′(Kg) + (MC + dg)F
′(Kg)) = 0

• Any tax policy which implements the allocation involves the green party uses a subsidy

sg in the first period that they gain control which is equal to (1/2)( β
1−β

)(dg−db)γF
′(Kg)

So, to solve for the optimal subsidy, we first numerically solve for theKg which satisfies the

first condition in Proposition A1. Then plug that into the expression for sg from proposition

A1.

A.5.4 Sensitivity Analysis

As with the sufficient statistic estimate, we first show sensitivity checks for the value of

the discount factor and for the two parties’ social costs of carbon. In table A4, we see

that higher discount factors (more patience) lead to higher subsidies, but the impact is not

large. Table A5 shows that increasing the green party’s social cost of carbon to the Biden

Administration’s suggested new value leads to significantly higher subsidies.

β = .954 β = .974 β = .934

Optimal Subsidy [5.0, 12.8] [4.6, 11.7] [5.4, 13.9]

Table A4. Calibration results for green party’s optimal subsidy with different levels of β.

Note that the β is equal to the annual discount factor raised to the fourth power, since the
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period length is four years. Like in the main body of the text, the lower bound in the intervals

is for γ = .18 and the upper bound is for γ = .59 (taken from the upper and lower estimates

in Abrell et al (2017)

Baseline Updated

Optimal Subsidy [5.0, 12.8] [13.9, 39.4]

Table A5. Calibration estimates for green party’s optimal subsidy with different values for

the parties’ social costs of carbon. The first column is for the baseline levels of dg = $51 and

db = $1. The second column is for the updated levels of dg = $190 and db = $4.

In addition, table A6 shows the sensitivity analysis for the three cost functions for green

energy considered in Borenstein and Kellogg (2023). In the case where the supply curve is

more elastic (less steep), we see slightly higher subsidies, as the marginal cost of clean energy

doesn’t rise by as much when subsidies are introduced. But overall, the subsidy levels are

nearly identical to the baseline levels.

Baseline High Elasticity Low Elasticity

Optimal Subsidy [5.0, 12.8] [5.0, 12.9] [5.0, 12.8]

Table A6. Calibration results for green party’s optimal subsidy for different specifications of

the green energy cost function. In the baseline, the marginal cost is equal to $91/MWh at

90% 2019 production levels. In the “High elasticity” case, this number is $70/MWh. In the

“Low elasticity” case, it’s $110/MWh.

Finally, table A7 shows sensitivity of the results to the demand elasticity. We see that

this has no impact on the results. This is due to the constant marginal cost assumption for

brown energy, which guarantees that an extra unit of green energy production will crowd

out one unit of brown energy32. If the supply of brown energy wasn’t perfectly elastic, then

crowd out would be less than one-for-one, and the demand elasticity would have some impact

on the optimal subsidy.

Demand Elasticity -0.186 -0.272 -0.358

Optimal Subsidy [5.0, 12.8] [5.0, 12.8] [5.0, 12.8]

32. Except for the case where brown energy production ends up at a corner solution. In that case, there is
zero crowd-out at the margin
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Table A7. Calibration results for green party’s optimal subsidy for different values of the

demand elasticity ϵ. The highest and lowest values are taken from the 95% confidence interval

in Deryugina et al (2021)

A.5.5 Solving for the competitive equilibrium in the naive case

First, we define the following function, which equilibrium level of brown production when

carbon taxes are equal to dg and the capital stock is K:

Eg
b (K) = D(MC + γdg)− F (K)

The following theorem characterizes the competitive equilibrium in the case where both

parties act naively.

Theorem A.2: If each party j always uses a carbon tax equal to dj when in power and

assumption A.1 holds, there is a unique competitive equilibrium with the following features:

• If the brown party is in power in period t, Kt = max{0, Kt−1 −K∗
b }

• If the green party is in power in period t, Kt = Kn > Kb, where Kn is the unique

solution to:

−1 + (1 +
β

2(1− β)
)v′(F (Kn) + Eg

b (Kn))F
′(Kn) +

β

2(1− β)
(MC + γdb)F

′(Kn) = 0

So, to solve for the steady state level Kn, we just need to solve for the condition in the

second part of theorem A.2.

B Proofs

Proof of Theorem 1: The Bellman equation for this planning problem is:

V (K) = maxK′≥K,Eb≥0 v(Eb + F (K ′))− (MC + γdj)Eb − (K ′ −K) + βV (K ′)

subject to K ′ ≥ K, Eb ≥ 0

The FOCs are:

v′(Eb + F (K ′))− (MC + γdj) ≤ 0
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v′(Eb + F (K ′))F ′(K ′)− 1 + βV ′(K ′) ≤ 0

With equality holding for interior solutions.

Define the function Ej
b (K

′) = max{D(MC+ γdj)−F (K ′), 0}. Notice that for any value

K ′, setting Eb = Ej
b (K

′) solves the FOC for Eb.

Now, define K∗
j as the unique solution to:

v′(Ej
b (K

∗
j ) + F (K∗

j ))F
′(K∗

j )− 1 + β = 0

There’s a unique positive solution since the left side is strictly decreasing, continuous, is

greater than zero for K∗
j = 0 (due to the first interior assumption) and eventually drops

below zero for large enough K∗
j (since limx→∞v′(x) = 0).

Guess that the optimal strategy is to set K ′ = max{0, K∗
j −K} and Eb = Ej

b (K
′). With

this guess, the value function becomes:

V (K) =

−(K∗
j −K) + 1

1−β
(v(F (K∗

j ) + Ej
b (K

∗
j ))− (MC + γdj)E

j
b (K

∗
j )) K ≤ K∗

j

1
1−β

(v(F (K) + Ej
b (K))− (MC + γdj)E

j
b (K)) K > K∗

j

This satisfies V ′(K) = 1 for K ≤ K∗
j and V ′(K) < 1 for K > K∗

j . From this, we see that

the FOC for K ′ is satisfied at our guessed solution for any K. And, as was already noted,

the FOC for Eb is also satisfied. Since the maximization problem in the Bellman equation

is concave, we know that the FOCs are sufficient conditions for solving the optimization

problem. So, our guessed solution is a solution. Finally, the FOCs have unique solutions, so

our guessed solution is the unique solution.

Since the initial capital level is zero, the optimal path has Kt = K∗
j and Ebt = Ej

b (K
∗
j )

in every period. This implies that x1 = K∗
j > 0 and xt = 0 for all t > 1, which proves the

second part of the theorem.

The next step is to show that Ej
b (K

∗
j ) > 0, which happens iff D(MC + γdj) > F (K∗

j ).

Assume otherwise for contradiction. Then the definition of K∗
j implies: v′(F (K∗

j ))F
′(K∗

j ) =

1 − β. Combining this with the condition that D(MC + γdj) ≤ F (K∗
j ) gives the following

inequality:

(MC + γdj)F
′(F−1(D(MC + γdj)) ≥ 1− β

which contradicts the second interior assumption. So, we know that Ej
b (K

∗
j ) > 0. This

proves the third part of the theorem.

With this result, the definition of K∗
j simplifies to:

(MC + γdb)F
′(K∗

j ) = 1− β
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Which proves the first part of the theorem.

Proof of Theorem 2: Set pt = v′(F (K∗
j ) + Ej

b (K
∗
j )) = MC + γdj. At this set of

prices and the planner allocation, the consumer’s FOCs are satisfied, which implies that the

consumer problem is satisfied since it’s a convex optimization problem.

The firm’s FOC for Ebt is:

pt = MC + γτt

Plugging in our values for pt and τt this becomes:

db + γdj = MC + γdj

So this is satisfied

The firm’s FOC for K1 is:

ptF
′(K∗

j ) = 1− β

And the FOC for Kt for t ≥ 2 is:

ptF
′(K∗

j ) ≤ 1− β

By the planner’s FOC, we know that the left side of both of these is equal to 1− β, so both

conditions are satisfied.

Since all FOCs are satisfied, and the firm problem is convex, this is a solution to the firm

problem. So, it is a competitive equilibrium.

Proof of Theorem 3: To satisfy the consumer problem, any competitive equilibrium in

which quantities are equal to the planner allocation must have pt = MC + γdj. The firm’s

net marginal revenue from a marginal investment in period t must be weakly negative for

the allocation to solve the firm problem (and must be equal to zero in period 1):

∞∑
t′=1

βt′−1(MC + γdj)F
′(K∗

j ) ≤ 1− st

From the planner’s FOC, we know (MC + γdj)F
′(K∗

j ) = 1−β, so this condition reduces to:

1 ≤ 1− st

The only way for this to hold is for st ≤ 0.

Proof of Theorem 4: The subgame starting in period 2 after the winner of the election
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has been realized as party j is just a one-player game, where party j chooses allocations

in each period to maximize their social welfare. This is identical to the planner problem

considered in theorem 1, except now the initial capital stock is K1 instead of zero. We

already showed in the proof of theorem 1 that the optimal solution in this case is to set K

equal to max{K∗
j −K1, 0} and Eb equal to max/D(MC + γdj), 0/.

Proof of Corollary 1 This follows immediately from the results in theorem 4.

Proof of Theorem 5 According to theorem 4, Eb1 has no impact on future allocations,

so it will just be set to maximize the first period utility, which means Eb1 = Eg
b (K1) =

max{D(MC + γdg)− F (K1), 0}
So, the green party’s optimization problem simplifies to choosing K1 to maximize:

ug(K1)−K1+
β

1− β
((1−θ)ug(K

g
2 (K1))+θub(K

b
2(K1)))+β((1−θ)(Kg

2 (K1)−K1)+θ(Kb
2(K1)−K1))

where uj(K) ≡ v(F (K) + Ej
b (K))− (MC + γdg)E

j
b (K) and Kj

2(K1) ≡ max{K∗
j −K1, 0}

Notice that the objective function is continuous. Taking the right derivative of the

objective w.r.t. K1 gives the net marginal benefit of increasing K1:

MB(K1) ≡



(MC + γdg)F
′(K1)− (1− β) K1 < K∗

b

(MC + γdg)F
′(K1)− 1 + β(1− θ) + β

1−β
θ(MC + γdg)F

′(K1) K∗
b ≤ K1 < K∗

g

(MC + γdg)F
′(K1)− 1 + β

1−β
(MC + γdg)F

′(K1) K∗
g ≤ K1 < K̄g

v′(F (K1))F
′(K1)− 1 + β

1−β
((1− θ)v′(F (K1)) + θ(MC + γdg))F

′(K1) K̄g ≤ K1 < K̄b

(1 + β
1−β

)v′(F (K1))F
′(K1)− 1 K1 ≥ K̄b

where K̄j is defined as the unique solution to: v′(F (K̄j)) = MC + γdj.

MB(K1) is positive for all K < K∗
g , negative for all K > K∗

g , and equal to zero for

K = K∗
g . So, K = K∗

g is the unique solution to the optimization problem.

Proof of Theorem 6:

By evaluating the consumer problem FOCs at the equilibrium allocation, we get p1 =

MC + γdg and pt = MC + γdj for all t ≥ 2 when party j wins the election. With prices at

that level, all consumer FOCs are satisfied, so the consumer problem is satisfied.

Note that with the tax policies given in the theorem, the firm’s profits don’t depend on

Ebt since price equals the constant marginal cost in each period. So, any choice of Ebt can

solve the firm problem. All that’s left to show is that the firm problem is solved at the

subgame perfect allocation of capital.
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With this price sequence and the tax policies given in the theorem, the firm problem can

be written recursively with the Bellman equations:

V1 = maxK1(MC + γdg)F (K1) + (1− s1)K1 + β((1− θ)Vg(K1) + θVb(K1)

Vj(K) = maxK′(MC + γdj)F (K ′)− (K ′ −K) + βVj(K
′)

subject to K ′ ≥ K. V1 corresponds to the first period (note, it doesn’t depend on K because

the initial capital stock is fixed at zero). Vj(K) is the value function for all periods greater

than 1 when party j wins the election.

First we’ll solve Vj(K). Guess that the solution is K ′ = max{K,K∗
j }. If this guess were

correct, the value function would be::

Vj(K) =

−(K∗
j −K) + 1

1−β
(MC + γdj)F (K∗

j ) K ≤ K∗
j

1
1−β

1
1−β

(MC + γdj)F (K) K > K∗
j

This value function can be easily shown to solve the Bellman. Furthermore, our guess

is consistent with the subgame perfect equilibrium allocation. The last step is to show that

solves the maximization problem in the first period value function. Since Vj(K) is concave

for each j, the FOC in the first period value function is a sufficient conditions for optimality:

(MC + γdg)F
′(K∗

g )− (1− s1) + β(θV ′
g (K

∗
g ) + (1− θ)V ′

b (K
∗
g )) = 0

With our expression for Vj(K), we can show that V ′
g (K

∗
g ) = 1 and V ′

b (K
∗
b ) =

1
1−β

(MC +

γdb)F
′(K∗

g ). Plugging these into the FOC for K1 and solving for s1:

s1 = θ(
1

1− β
)(dg − db)γF

′(K∗
g )

Which is subsidy in the theorem, so this FOC holds.

Proof of Theorem 7 In the proof of theorem 5, we showed the green party’s FOC for

increasing K1 in the first period is:

1

1− β
(MC + γdg)F

′(K∗
g )− 1 + β = 0

First off, in any competitive equilibrium which has the subgame perfect allocation, prices

are pinned down by the consumer problem FOCs: p1 = MC+γdg and pt = MC+γdj for all

t ≥ 2 when party j wins the election. Next, a necessary condition for the firm problem to be

42



solved is that a marginal change in first period investment can’t increase expected profits:

(MC + γdg)F
′(K∗

g )− (1− s1) +
β

1− β
(θ(MC + γdg) + (1− θ)(MC + γdg))F

′(K∗
g ) = 0

Subtracting this from the green party’s FOC gives:

s1 = θ(
1

1− β
)(dg − db)γF

′(K∗
g )

Proof of Theorem 8 In the subgame starting in period 2, the optimal strategy for the

party in power is to choose Ebt, Kt to maximize their social welfare function: ∞∑
t=2

βt−1(v(F (Kt) + Ebt)︸ ︷︷ ︸
Consumption Value

−xt −MCEbt︸ ︷︷ ︸
Cost

− djγEbt︸ ︷︷ ︸
Externality

)


Subject to the law of motion for all t:

Kt = Kt−1 + xt

conditional on the inherited level of capital K1.

Notice that there is now no irreversible investment constraint. The Bellman equation

associated with this problem is:

Vj(K) = maxK′,Eb
v(F (K ′) + Eb)− (K ′ −K)− (MC + γdb)Eb + βVj(K

′)

Guess that the solution is

Vj(K) = (K∗
j −K) +

β

1− β
(v(F (K∗

j ) + Ej
b (K

∗
j ))− (MC + γdj)E

j
b (K

∗
j ))

where Ej
b (K

∗
j ) = D(MC + γdj)− F (K∗

j ).

This value function solves the bellman equation, and maximization problem within the

bellman has a unique solution: K ′ = K∗
j and Eb = D(MC + γdj) − F (K∗

j ). So, in any

subgame perfect equilibrium, x2 = K∗
j −K1, xt = 0 for all t ≥ 2, Kt = K∗

J for all t ≥ 2, and

Ebt = D(MC + γdj)− F (K∗
j ) for all t ≥ 2, where j denotes the party who wins the second

period election.

The green party’s problem in the first period then simplifies to maximizing:

v(F (K1) + Eb1)− (MC + γdg)Eb1 −K1 + βK1
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The FOCs for this are:

v′(F (K1) + Eb1)− (MC + γdg) ≤ 0

v′(F (K1) + Eb1)F
′(K1)− (1− β) ≤ 0

We already showed in the proof of theorem 1 that these have a unique solution of K1 = K∗
g

and Eb1 = D(MC + γdg)− F (K∗
g ). So, in every period, the party in power sets Kt and Ebt

to their no-turnover level.

The FOCs from the consumer problem say that if this allocation is part of a competitive

equilibrium, pt = MC + γdj, where j is the party in power in period t. This, combined with

the firm’s FOCs for Ebt, says that τt = dj for all t, where j is the party in power at time t.

The firm can’t benefit from marginally changing investment in the first period and holding

it constant in all future periods, which gives the condition:

(MC+γdg)F
′(K∗

g )− (1− s1)+
β

1− β
(θ(MC+γdg)F

′(K∗
g )+(1− θ)(MC+γdb)F

′(K∗
b )) = 0

Since the FOCs from the planner problems tell us that (MC + γdj)F
′(K∗

j ) = 1− β for each

j, this simplifies to: s1 = 0.

Similarly, the firm can’t benefit from marginally changing investment in any period t ≥ 2:

1

1− β
(MC + γdj)F

′(K∗
j )− (1− st)

which simplifies to st = 0

Proof of Theorem 9: First, in any markov perfect equilibrium, allocations in each

period can only depend on the capital inherited in that period. This means that allocations

cannot depend on the history of previous level of brown production. So, brown production

in each period is just set to maximize the party in power’s period utility, which implies Ebt

satisfies the FOC v′(F (Kt) + Ebt)− (MC + γdj, which further implies that E

bt = E˙bˆj(K˙t) = max{ D(MC + γdj)− F (Kt), 0}. This is equal to D(MC + γdj), the

value stated in the theorem, as long as D(MC + γdj)− F (Kt) ≥ 0, which follows from the

later result that along the equilibrium path, Kt ≤ K∗
g (since D(MC + γdj)−K∗

g > 0.

Now, to prove the first part of the theorem. Let Kg and Kb be the equilibrium capital

targets for the green and brown party, respectively. First we’ll show that Kg > Kb. As-

sume otherwise for contradiction. Consider the green party’s net marginal benefit from a

44



permanent deviation where they set their capital target to be marginally lower than Kg:

1− [
∞∑
t=0

βt(1/2)tv′(F (Kg) + Eg
b (Kg))F

′(Kg) +
∞∑
t=1

βt(1/2)t] = 0

This condition simplifies to:

v′(F (Kg) + Eg
b (Kg))− (1− β) = 0

This is the FOC for investment in the green party’s full control solution, so Kg = K∗
g .

Now write the brown party’s FOC for a marginal increase in Kb:

−1 + v′(F (Kb) + Eb
b(Kb))F

′(Kb) + (1/2)
∞∑
t=0

βt(v′(F (Kb) + Eb
b(Kb))F

′(Kb) + ub
g
′(Kb))

where ub
g(Kb) ≡ v(f(Kb) + Eg

b (Kb)) − (MC + γdb)E
g
b
′(Kb) is the period utility that the

brown party gets when the green party is in power and Kt = Kb, which implies ub
g
′(Kb) =

v′(F (Kb) + Eg
b (Kb))(F

′(Kb) + Eg
b
′(Kb))− (MC + γdb)E

g
b
′(Kb).

There are two possible cases. The first case is Eg
b (Kb) > 0. This implies that Eg

b
′(Kb) =

F ′(Kb), which implies ub
g
′(Kb) = v′(F (Kb)+Eb

b(Kb))F
′(Kb). The brown party’s FOC for Kb

then simplifies to:

−(1− β) + v′(F (Kb) + Eb
b(Kb)) = 0

We know from the proofs in the no turnover case that this is only satisfied for Kb = K∗
b ,

but we assumed that Kb > K∗
b , so this is case is impossible. The second case is Eg

b (Kb) = 0.

This implies Eb
b(Kb) = 0 and ub

g
′(Kb) = v′(F (Kb) + Eg

b (Kb))F
′(Kb) = v′(F (Kb))F

′(Kb). So

the FOC for Kb simplifies to:

−(1− β) + v′(F (Kb))F
′(Kb) = 0

We know from the proofs in the full control case that v′(F (Kb)+Eb
b(Kb))F

′(Kb) is strictly de-

creasing and equals 1−β whenKb = K∗
b . We assumed thatKb > K∗

b here, so v
′(F (Kb))F

′(Kb) =

v′(F (Kb) + Eb
b(Kb))F

′(Kb) < (1− β), which implies:

−(1− β) + v′(F (Kb))F
′(Kb) < 0

But this contradicts our earlier expression for the FOC. In either case we have a contradiction,

so it’s impossible for Kb > Kg.

Now, we can pin down the value of Kb with the brown party’s FOC for a permanent
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deviation which marginally decreases their target level:

1− [
∞∑
t=0

βt(1/2)tv′(F (Kb) + Eb
b(Kb))F

′(Kb)] +
∞∑
t=1

βt(1/2)t = 0

This condition simplifies to:

v′(F (Kb) + Eb
b(Kb))− (1− β) = 0

Which we know from the no-turnover case is only satisfied at Kb = K∗
b

Now, we can pin down the value of Kg by looking at the green party’s net marginal

benefit of a permanent marginal increase in Kg, MB(Kg). First, look at the case where

Kg < K∗
b . In this case:

MB(Kg) = −1 +
∞∑
t=0

βt(1/2)tv′(F (Kg) + Eg
b (Kg))F

′(Kg) +
∞∑
t=1

βt(1/2)t

which simplifies to:

(1− (1/2)β)[−(1− β) + (MC + γdg)F
′(Kg)] > 0

where the inequality follows from the fact that Kg < K∗
g .

Next the case where Kg ∈ [Kb, K̄g), where K̄g is the unique solution to v′(F (K̄g)) =

MC + γdg. In this case:

MB(Kg) = (MC + γdg)F
′(Kg)− 1 +

β

1− β
(MC + γdg)F

′(Kg)

which simplifies to:
1

1− β
[(MC + γdg)F

′(Kg)− (1− β)]

We know from the proofs in the no turnover case that this is strictly decreasing and is equal

to zero when Kg = K∗
g .

Next is the case where Kg ∈ [K̄g, K̄b). In this case:

MB(Kg) = v′(F (Kg))F
′(Kg)− 1 +

β

1− β
(1/2)(v′(F (Kg)) + (MC + γdg))F

′(Kg)
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Since v′(F (Kg)) ≤ MC + γdg, we find:

MB(Kg) ≤
1

1− β
[(MC + γdg)F

′(Kg)− (1− β)] < 0

where the last inequality follows because Kg > K∗
g .

The final case is where Kg ≥ K̄b. Then we get:

MB(Kg) = v′(F (Kg))F
′(Kg)− 1 +

β

1− β
v′(F (Kg))F

′(Kg) < 0

Where the inequality follows from Kg > K∗
g and v′(F (Kg)) ≤ MC + γdg

So, we’ve shown that MB(K) is equal to zero at K∗
g , positive for all feasible K < K∗

g ,

and negative for all K > K∗
g . This means that the green party’s target level must be K∗

g

Last is to show that this is in fact a subgame perfect equilibrium by checking that there

are no profitable one-shot deviations. Start first with the green party. The benefit from a

one-shot deviation that increases Kt to K̂ > K∗
g is the same as the benefit of permanently

increasing the target level. We already showed that this can’t be profitable. Now, consider

a one shot deviation to K̂ < K∗
g . If this were profitable, then a permanent deviation of this

sort would also be profitable (that is, a deviation where the green party sets their target level

to K̂ instead of K∗
g ). But again, we already showed that this sort of permanent deviation

isn’t profitable. So the green party has no profitable one shot deviation.

Similarly, for the brown party, we know that if a one-shot deviation to K̂ is profitable,

then a permanent deviation to K̂ must also be profitable. We’ve already shown that a

permanent deviation to K̂ ≥ K∗
g isn’t profitable. Now consider a deviation to K̂ < K∗

g . The

marginal benefit of increasing K̂ is given by:

−1 + [
∞∑
t=0

βt(1/2)tv′(F (K̂) + Eb
b(K̂))F ′(K̂)] +

∞∑
t=1

βt(1/2)t

which simplifies to:

v′(F (K̂) + Eb
b(K̂))− (1− β)

But, as we already noted previously, this is equal to zero when K̂ = K∗
b , positive when

K̂ < K∗
b , and negative when K̂ > K∗

b . So no permanent deviation away from K∗
b can be

profitable, which means that no one-shot deviation can be profitable.

Finally, with these equilibrium strategies, and an initial capital level of zero, the capital

level never gets above K∗
g along the equilibrium path. So Ebt = D(MC + γdj)− F (Kt) > 0

for all t.
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Proof of Theorem 10 First, if the competitive equilibrium allocation is equal to the

equilibrium allocation from theorem 9, then we know from the consumer problem FOCs that

pt = MC + γdj for any t where party j is in power.

The FOCs for Ebt from the firm problem give:

pt = MC + γτt

Plugging in our expression for pt, this simplifies to τt = dj.

A necessary condition for the firm problem to be satisfied is that the expected impact

on profits from a one time marginal increase in investments is zero. In the first period when

the green party is in power, that expected increase in profits is:

−(1− s∗g) + (MC + γdg)F
′(K∗

g ) + (1/2)
β

1− β
((MC + γdg)F

′(K∗
g ) + (cg + db)F

′(K∗
g )) = 0

The green party’s FOC for K∗
g is:

−1 + (MC + γdg)F
′(K∗

g ) +
β

1− β
(MC + γdg)F

′(K∗
g ) = 0

Subtracting these gives:

s∗g = (dg − db)
(1/2)β

1− β
F ′(K∗

g )

The expected increase in profits from a marginal increase in investment when the brown

party has control in the first period is:

−(1− s∗b) +
1

1− (1/2)β
(MC + γdb)F

′(K∗
b ) +

(1/2)β

1− (1/2)β
(1− s∗g)

The brown party’s FOC for K∗
b is:

−1 +
1

1− (1/2)β
(MC + γdb)F

′(K∗
b ) +

(1/2)β

1− (1/2)β

Subtracting these gives:

s∗b =
(1/2)β

1− (1/2)β
s∗g

Proof of Proposition A.1: First off, in cases where the interior assumptions hold,

theorem 9 applies, and so proposition A1 follows directly from theorem 9. Now we need to

look at the case where the second interior assumption doesn’t hold. Then the green party’s

full control steady state K∗
g ≥ K̄, so no brown energy gets used in the green party’s full
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control solution.

Follow identical steps to the proof of theorem 9 until solving for the green party’s target

level. Here we get the same expressions for the green party’s marginal benefit of increasing

Kg:

MB(Kg) ≡



(1− (1/2)β)[−(1− β) + (MC + γdg)F
′(K)] K < K∗

b

1
1−β

[(MC + γdg)F
′(K)− (1− β)] K∗

b ≤ K < K̄g

v′(F (K))F ′(K)− 1 + β
1−β

(1/2)(v′(F (K)) + (MC + γdg))F
′(K) K̄g ≤ K < K̄b

v′(F (K))F ′(K)− 1 + β
1−β

v′(F (K))F ′(K) K̄g ≤ K < K̄b

Following the same steps from Theorem 9, we can show that MB(K) > 0 when K < K∗
b

and that MB(K) < 0 for K > K̄b. Unlike in theorem 9, we can now show that MB(K) < 0

for K ∈ [Kb, K̄g) since K∗
g is now weakly greater than K̄g.

For K = K̄g, we know that v′(F (K))F ′(K) > 1−β0 (since K < K∗
g and the green party’s

full control FOC says v′(F (K∗
g ))F

′(K∗
g ) = 1 − β). This then implies that MB(K̄g) > 0.

Assumption A.1 says that MB(K̄b) < 0. Since MB(K) is continuous and strictly decreasing

for all K ∈ [K̄g, K̄b, there must be a point in that interval where it equals zero:

v′(F (Kg))F
′(Kg)− 1 +

β

1− β
(1/2)(v′(F (Kg)) + (MC + γdg))F

′(Kg)

That point must be the green party’s steady state Kg, since MB(K) < 0 for all K < Kg

and MB(K) > 0 for all K > Kg.

Following the same steps as in theorem 9, we can show that there are no profitable one-

shot deviations, so this is an equilibrium. So that proves the first part of the proposition.

Following the proof of theorem 10, we can write the firm’s marginal benefit from a one-

time increase in investment in the first period the green party has control:

−(1− s∗g) + v′(F (Kg)F
′(Kg) + (1/2)

β

1− β
(v(F (Kg))F

′(Kg) + (cg + db)F
′(K∗

g )) = 0

The green party’s FOC for K∗
g is:

−1 + v′(F (Kg)F
′(Kg) + (1/2)

β

1− β
(v(F (Kg))F

′(Kg) + (cg + dg)F
′(K∗

g )) = 0

Subtracting these gives:

s∗g = (dg − db)
(1/2)β

1− β
F ′(Kg)
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The brown party’s FOC for K∗
b is:

−1 +
1

1− (1/2)β
(MC + γdb)F

′(K∗
b ) +

(1/2)β

1− (1/2)β

Subtracting these gives:

s∗b =
(1/2)β

1− (1/2)β
s∗g

Proof of Proposition 1: Set pt(h
t) = MC + γdj in any history where party j has

power. The consumer problem FOCs are: pt(h
t) = v′(Et(h

t)) = MC + γdj, so these are

satisfied, which means the consumer problem is satisfied.

The firm FOCs for Ebt are pt(h
t) = MC + γτt(h

t). With τt(h
t) = dj and pt(h

t) =

MC + γdj, these are satisfied. Ebt drops out of the firm problem since prices exactly equal

marginal costs. So the firm problem is now to choose an allocation for Kt and xt to maximize

expected profits:

E[
∞∑
t=1

βt−1(ptF (Kt)− (1− st)xt]

subject to the law of motion and irreversibility constraints.

This can be written recursively with the following two Bellman equations:

Vj(K) = maxK′≥K(MC + γdj)F (K ′)− (1− sj)(K
′ −K) + (1/2)β(Vb(K

′) + Vg(K
′))

Guess that the the policy function when party j is in control is K ′(K) = max{K,K∗
j }.

If this guess is correct, then the equilibrium allocation solves the firm problem. With this

guess, the value functions are:

Vg(K) =

−(K∗
g −K)(1− sg) + (MC + γdg)F (K∗

g ) +
(1/2)β
1−β

(2MC + γdg + γdb)F (K∗
g ) K ≤ K∗

g

(MC + γdg)F (K) + (1/2)β
1−β

(2MC + γdg + γdb)F (K) K > K∗
g

Vb(K) =



−(K∗
b −K)(1− sb) +

1
1−(1/2)β

(MC + γdb)F (K∗
b )

+ (1/2)β
1−(1/2)β

(Vg(K
∗
g )− (1− sg)(K

∗
g −K∗

b ) K ≤ K∗
b

1
1−(1/2)β

(MC + γdb)F (K) + (1/2)β
1−(1/2)β

(Vg(K
∗
g )− (1− sg)(K

∗
g −K) K∗

b < K ≤ K∗
g

(MC + γdg)F (K) + (1/2)β
1−β

(2MC + γdg + γdb)F (K) K > K∗
g

Taking derivatives:
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V ′
g (K) =

−(1− sg) K ≤ K∗
g

(MC + γdg)F
′(K) + (1/2)β

1−β
(2MC + γdg + γdb)F

′(K) K > K∗
g

V ′
b (K) =


−(1− sb) K ≤ K∗

b

1
1−(1/2)β

(MC + γdb)F
′(K) + (1/2)β

1−(1/2)β
(1− sg) K∗

b < K ≤ K∗
g

(MC + γdg)F
′(K) + (1/2)β

1−β
(2MC + γdg + γdb)F

′(K) K > K∗
g

These derivatives are continuous and weakly decreasing, which means that the maximiza-

tion problems within the Bellman equations are convex, so the FOC is a sufficient condition

for optimality. Evaluating the FOC of the g bellman at K ′ = K∗
g and simplifying gives:

−(1− sg) + (MC + γdg)F
′(K∗

g ) +
(1/2)β

1− β
(2MC + γdg + γdb)F

′(K∗
g )

In the proof of theorem 10, we showed that this is equal to zero. And, since the FOC is

strictly decreasing, this means that for K > K∗
g the left side will be ≤ 0, so our guessed

solution satisfies the FOC for all values of K.

Evaluating the FOC of the b Bellman at K ′ = K∗
b and simplifying gives:

−(1− sb) +
1

1− (1/2)β
(MC + γdb)F

′(K∗
b ) +

(1/2)β

1− (1/2)β
(1− sg) = 0

In the last step of the proof of theorem 10, we showed that this equals zero. And, since the

FOC is strictly decreasing, this means that for K > K∗
b the left side will be ≤ 0, so our

guessed solution satisfies the FOC for all values of K.

Proof of Theorem A.2: Now, consider a modified version of the G.E. model from

appendix A.1. where tax and subsidy revenue does not get transferred to consumers (i.e.

taxes represent real costs in this economy). The consumer problem is to choose an allocation

{y(ht)}, {E(ht)} to maximize utility:∑
t

∑
ht

βt−1Π(ht)(yt + v(Et))

subject to the budget constraint:∑
t

∑
ht

βt−1Π(ht)(y(ht) + p(ht)E(ht)) ≤ A
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This is the same as in the original GE economy but now transfers equal zero.

The firm problem is to choose an allocation ({y(ht)}, {Eb(ht)}, {K(ht)}, {x(ht)}) to

maximize expected profits:∑
t

∑
ht

βt−1Π(ht)(y(ht) + p(ht)(F (Kt) + Eb(ht)))

Subject to the resource constraint, law of motion, and irreversibility constraints:

y(ht) + (MC + τ(ht))Eb(ht) + (1− s(ht))x(ht) = L

K(ht) = K(ht−1) + x(ht)

xt ≥ 0

The difference is that taxes and subsidies now appear in the resource constraint.

A competitive equilibrium is now defined as a set of quantities, prices, taxes and subsidies

which:

1. Solve the consumer problem

2. Solve the firm problem

3. Satisfy market clearing

The only difference here is that since there are no transfers, there’s no government budget

constraint.

Note that the consumer and firm problems both reduce to the partial equilibrium prob-

lems if we use the constraints to eliminate y(ht). So, any ({Eb(ht)}, {K(ht)}, {x(ht)},
{E(ht)}) which are part of a competitive equilibrium allocation of this economy are also a

competitive equilibrium allocation of the PE economy, since they solve the same consumer

problem, firm problem, and market clearing constraints.

So, to solve for the set of possible C.E.A. in the PE economy, we just need to solve for

the set of possible C.E.A. in the modified GE economy. The first welfare theorem says that

any C.E.A. is pareto efficient. To solve for all pareto efficient allocations, find allocations

which maximize expected utility:∑
t

∑
ht

βt−1Π(ht)(yt + v(Et))

subject to the resource constraint, irreversibility constraint, and law of motion. Using the

resource constraint to eliminate y(ht), the problem simplifies to choosing an allocation to
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maximize: ∑
t

∑
ht

βt−1Π(ht)(v(Et)− (MC + τ(ht))Eb(ht)− (1− s(ht))x(ht))

subject to the law of motion and irreversibility constraints.

We are specifically looking at the case where τ(ht) = dj and s(ht) = 0 for all t. In this

case, the planner problem can be written recursively as the following two Bellman equations:

Vj(K) = maxK′≥K,Eb≥0v(F (K ′)+Eb)− (MC+γdj)Eb− (K ′−K)+(1/2)β(Vb(K
′)+Vg(K

′))

Guess that the solution is to

1. set K ′ = max{K,Kn} and Eb = D(MC + γdg)− F (K ′) when party g is in power

2. set K ′ = max{K,K∗
b } and Eb = D(MC + γdg)− F (K ′) when party b

The Bellman equations that correspond to this guess are:

Vg(K) =

−(Kn −K) + ug(Kn) +
(1/2)β
1−β

(ug(Kn) + ub(Kn)) K ≤ Kn

ug(K) + (1/2)β
1−β

(ub(K) + ug(K)) K > Kn

Vb(K) =


−(K∗

b −K) + 1
1−(1/2)β

ug(K
∗
b ) +

(1/2)β
1−(1/2)β

(Vg(K
∗
b )) K ≤ K∗

b

1
1−(1/2)β

ug(K) + (1/2)β
1−(1/2)β

(Vg(K)) K∗
b < K ≤ Kn

ub(K) + (1/2)β
1−β

(ub(K) + ug(K)) K > K∗
g

where uj(K) ≡ v(F (K) + Ej
b (K))− (MC + γdj)E

j
b (K) and Ej

b (K) ≡ max{0, D(MC +

γdj)− F (K)}.
Taking derivatives:

V ′
g (K) =

1 K ≤ Kn

u′
g(K) + (1/2)β

1−β
(u′

b(K) + u′
g(K)) K > Kn

V ′
b (K) =


1 K ≤ K∗

b

1
1−(1/2)β

u′
g(K) + (1/2)β

1−(1/2)β
K∗

b < K ≤ Kn

u′
b(K) + (1/2)β

1−β
(u′

b(K) + u′
g(K)) K > K∗

g
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Both V ′
b (K) and V ′

g (K) are continuous and weakly decreasing. This means that the

maximization problems inside of the Bellmans are strictly convex, so the FOCs are sufficient

conditions for optimality. By plugging V ′
b (K) and V ′

g (K) into the FOCs, we see that they

are satisfied at our guessed solution for all values of K. Finally, with these value functions,

the FOCs have a unique solution every K, so our guessed solution is the unique pareto

efficient allocation in this economy. The welfare theorems tell us, then, that this is the

unique competitive equilibrium allocation of this economy.

Proof of Theorem A.4: From period 2 on, the party in power has full control, so it’s

a one player game. Their planning problem is recursive and has the following Bellman:

V (K) = maxK′≥K,Eb≥0v(F (K ′) + Eb)− c(Eb)− γdjEb − (K ′ −K) + βV (K ′)

The FOC for Eb is:

v′(F (K ′) + Eb)− c′(Eb)− γdj ≤ 0

Where equality holds if Eb > 0. For fixed K ′, this is strictly decreasing and for large enough

Eb is negative, so it has a unique solution. Define the function Ej
b (K

′) to be that unique

solution.

As in the proof of theorem 1, guess that the policy functions are K ′(K) = max{K,K∗
j }

and Eb(K) = Ej
b (K

′(K)), where K∗
j is the unique solution to v′(F (K∗

j ) +Ej
b (K

∗
j ))F

′(K∗
j ) =

1− β. This can be easily shown to solve the bellman equation.

Let the function Kj
2(K1) ≡ max{K,K∗

j } give the capital stock for periods t ≥ 2 in the

case where party j wins the election.

The green party’s problem in the first period is then to choose K1 to maximize:

ug(K1)−K1 +
β

1− β
[θub(K1) + (1− θ)ug(K1)]− θ(Kb

2(K1)−K1)− (1− θ)(Kg
2 (K1)−K1)

where:

uj(K1) ≡ v(F (K1) + Ej
b (K1))− c(Ej

b (K1))− γdgE
j
b (K1)

This objective function is continuous. For K1 ≥ K̄b (where K̄b is the point where the

brown party uses no brown energy in the second period, which is the unique solution to

v′(F (k))F ′(K) = c′(0) + γdb), the objective function’s right derivative is continuous and is

equal to 1
1−β

v′(F (K1))F
′(K1)− 1 < 0 since in this range K1 > K∗

g . For K1 < K∗
b , the right

derivative is 1
1−β

v′(F (K1) +Eg
b (K1))F

′(K1)− 1 > 0. So, there must exist at least one finite

point K1 ∈ [K∗
b , K̄b] which maximizes the objective.

Now we’ll show that the solution must be in the interior of the interval [K∗
b , K̄b].
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First, the right derivative at K∗
b is equal to:

v′(Eg
b (K

∗
b ) + F (K∗

b ))F
′(K∗

b )− 1 + β(1− θ) +
β

1− β
θu′

b(K
∗
b ) > 0

Where the inequality follows from the fact that:

u′
b(K

∗
b ) = v′(Eb

b(K
∗
b ) + F (K∗

b ))(F
′(K∗

b ) + Eb
b
′(K∗

b ))− (c′(Eb
b(K

∗
b )) + γdg)E

b
b
′(K∗

b )

< v′(Eb
b(K

∗
b ) + F (K∗

b ))(F
′(K∗

b ) + Eb
b
′(K∗

b ))− (c′(Eb
b(K

∗
b )) + γdb)E

b
b
′(K∗

b ) = 1− β

where the last equality follows from the brown party’s FOC in the second period. So the

solution can’t be at K∗
b .

Next, the left derivative at K̄b is:

v′(F (K̄b))F
′(K̄b)− 1 +

β

1− β
(1− θ)v′(F (K̄b))F

′(K̄b) +
βθ

1− β
u′
b(K̄b)

< v′(F (K̄g))F
′(K̄g)− 1 +

β

1− β
(1− θ)v′(F (K̄g))F

′(K̄g) +
βθ

1− β
u′
b(K̄b)

where K̄g is the point which satisfies v′(F (K)) = c′(0) + γdg.

We can then put an upper bound on u′
b(K̄b):

u′
b(K̄b) = v′(F (K̄b))(F

′(K̄b) + Eb
b
′(K̄b))− (c′(Eb

b(K̄b)) + γdg)E
b
b
′(K̄b)

≤ (c′(0) + γdg)F
′(K̄b) = v′(F (K̄b))F

′(K̄b)

where the inequality used the fact that crowd out can be at most one-for-one, so Eb
b
′(K̄b) ≥

−F ′(K̄b). This result, combined with our earlier upper bound, says that the left derivative

of the objective function at K̄b is negative.

So, any maximum is in the range (K∗
b , K̄b). Within that range, the objective function is

continuously differentiable.

There are two cases. The first is where K∗
1 < K∗

g . In this case, the green party makes

positive investment when they gain control in the second period. Following the same steps

as in the proof of theorem 3, we can easily show that in any implementation of the optimum

the green party must use zero subsidies in the second period and a carbon tax equal to dg

in all periods they have control. Similarly, the brown party must use a carbon tax equal to

db whenever they have control. The green party’s FOC for K1 is:

v′(Eg
b (K

∗
1) + F (K∗

b ))F
′(K∗

1)− 1 + β(1− θ) +
βθ

1− β
u′
b(K

∗
1) = 0
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and the firm’s FOC is:

v′(Eg
b (K

∗
1) + F (K∗

b ))F
′(K∗

1)− 1 + s1 + β(1− θ) +
β

1− β
θu′

bf (K
∗
1) = 0

where:

ubf (K1) ≡ v(F (K1) + Eb
b(K1))− c(Eb

b(K1))− γdbE
b
b(K1)

and we used the fact that prices in each period are equal to the marginal utility of consump-

tion. Subtracting the firm and green party FOCs gives:

s1 =
βθ

1− β
(dg − db)E

b
b
′(K1) =

βθ

1− β
(dg − db)

dCb(K1)

dx1

The second case is where K1 ≥ K∗
g . Here the green party’s FOC for K1 is:

v′(Eg
b (K

∗
1) + F (K∗

b ))F
′(K∗

1)− 1 + u′
g(K

∗
1 +

βθ

1− β
u′
b(K

∗
1) = 0

And the firm’s FOC is given by:

v′(Eg
b (K

∗
1) + F (K∗

b ))F
′(K∗

1)− 1 + s1 + β(1− θ) +
β

1− β
θu′

bf (K
∗
1) = 0

Subtracting these gives the same subsidy expression:

s1 =
βθ

1− β
(dg − db)E

b
b
′(K1) =

βθ

1− β
(dg − db)

dCb(K1)

dx1
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