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Abstract

This paper studies a two-stage model of experimentation, where the researcher
first samples representative units from an eligible pool, then assigns each sampled
unit to treatment or control. To implement balanced sampling and assignment,
we introduce a new family of finely stratified designs that generalize matched pairs
randomization to propensities p(x) 6= 1/2. We show that two-stage stratification
nonparametrically dampens the variance of treatment effect estimation. We for-
mulate and solve the optimal stratification problem with heterogeneous costs and
fixed budget, providing simple heuristics for the optimal design. In settings with
pilot data, we show that implementing a consistent estimate of this design is also
efficient, minimizing asymptotic variance subject to the budget constraint. We
also provide new asymptotically exact inference methods, allowing experimenters
to fully exploit the efficiency gains from both stratified sampling and assignment.
An application to nine papers recently published in top economics journals demon-
strates the value of our methods.
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1 Introduction

Randomized controlled trials (RCTs) are now common in economics research, with thou-
sands of active experiments in the AEA RCT registry spanning a wide range of fields. A
key objective of experimental design is to reduce the variance of treatment effect estima-
tion, helping applied researchers make the most efficient use of their limited resources.
One way to do this is by covariate-adaptive treatment assignment, which balances ob-
served covariates between the treatment and control group at design-time. This paper
contributes to theory of covariate-adaptive treatment assignment, but also models a new
dimension of experimental design: the selection of the experimental participants.

The selection of participants, also known as the sampling frame, is an important
step in designing an experiment. For example, Abaluck et al. (2021) run an experiment
to estimate the effect of mask distribution on covid infection rates in Bangladesh. From
a pool of 1000 eligible villages, they first randomly sample 600 to be included in the
experiment, then assign the sampled villages to various interventions that promote mask
usage. Similarly, Breza et al. (2021) estimate the effect of Facebook ads discouraging
holiday travel on covid infection rates. Since their budget for running ads is finite, they
first sample a small set of counties in which to run ads and collect outcome data, then
randomly assign these sampled counties to low or high intensity of treatment. We show
how to increase the efficiency of treatment effect estimation by sampling experimental
units that are representative of the broader target population, and provide new inference
methods that take full advantage of these precision gains.

To do so, this paper introduces a new family of finely stratified randomization pro-
cedures that can be used for both representative sampling of the experimental units and
finely balanced treatment assignment. When used for assignment, our method general-
izes the principle of matched pairs randomization to propensities p(x) 6= 1/2, allowing
discrete or continuous stratification variables in general dimension. The basic building
block is a new algorithm that matches the experimental units into homogeneous groups
of k by minimizing an objective function directly linked to estimation efficiency. This
matching algorithm also enables finely stratified sampling of the experimental partici-
pants. For example, suppose 1000 people respond to an advertisement to participate
in an experiment, but the experimental budget only allows for 200 participants. Using
observed covariate information, we match the units into homogeneous 5-tuples, sam-
pling q = 1/5 of the units in each tuple to participate, uniformly at random. By finely
representing the distribution of treatment effect heterogeneity in the population into
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our smaller experiment, this sampling procedure reduces the variance due to treatment
effect heterogeneity. More generally, we provide finely stratified designs implementing
heterogeneous sampling propensities q(x).

We study a two-stage procedure that (1) samples participants then (2) assigns treat-
ments to the sampled units, using finely stratified designs at both stages. Under finely
stratified treatment assignment alone, the difference-of-means estimator Y ∼ 1 + D

achieves the Hahn (1998) variance bound for the average treatment effect (ATE), ef-
fectively doing nonparametric regression adjustment “by design.” Our analysis shows
that finely stratified sampling provides an additional nonparametric variance reduction,
dampening the variance due to treatment effect heterogeneity. In particular, represen-
tative sampling makes this variance component scale with the the number of units we
sample from, rather than the smaller true experiment size, boosting the effective sample
size for this component of the variance. Extending recent results in Bai (2022), we char-
acterize the optimal stratification variables for sampling and assignment, showing that
for sampling one wants to stratify on covariates that are most predictive of treatment
effect heterogeneity. In an extension, we also study estimation of the sample average
treatment effect (SATE) over the eligible population using design-based asymptotics.

Building on these asymptotic results, we formalize and solve an optimal design prob-
lem with fixed experimental budget and heterogeneous costs. In development economics,
the cost of including a village in an experiment can vary widely based on observable char-
acteristics such as its distance from the urban center, village size and so on. This forces
applied researchers to choose a tradeoff between sample size and sample representative-
ness when they select where to experiment. We propose a new formalization of this
tradeoff, deriving the jointly optimal sampling intensity q∗(x) and assignment propen-
sity p∗(x) under finely stratified randomization. Our results provide simple heuristics
for optimal sampling of the experimental units, analogous to classical results on sample
allocation for coarsely stratified survey design (Cochran (1977)). Under homoskedas-
ticity, for instance, the optimal sampling propensity q∗(x) ∝ C(x)−1/2, where C(x) is
the cost of including a unit of type X = x in the experiment. We show that an oracle
design that implements discretizations of q∗(x) and p∗(x) using fine stratification mini-
mizes the asymptotic variance of our estimator over all stratified designs, subject to the
experimental budget constraint.

We also briefly investigate exact optimality in finite samples. For fixed propensity
p = 1/2, we prove that the globally optimal covariate-adaptive randomization takes the
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form of a novel “alternating design”, assigning a certain optimal allocation vector (d∗i )
n
i=1

and its mirror image (1−d∗i )ni=1 each with probability 1/2. The optimal allocation (d∗i )
n
i=1

solves the well-known Max-Cut graph partitioning problem (Rendl et al. (2008)), with
edge weights related to the smoothness of the outome functions.

We apply our optimal stratification results to the problem of two-wave design using
data from a pilot experiment, providing the first fully efficient solution to this problem.
The basic idea is to estimate the optimal sampling and assignment propensities q∗(x)

and p∗(x) using the pilot, then implement these estimates in the main experiment using
fine stratification. Under large pilot asymptotics, this strategy is as efficient as the oracle
design, achieving the budget-constrained minimal asymptotic variance. We also provide
results under fixed pilot asymptotics, and briefly discuss potential robustifications. In
the case without sampling, the problem of design using a pilot has received considerable
attention in the recent literature, see for instance Hahn et al. (2011), Tabord-Meehan
(2022), and Bai (2022), and we give a detailed comparison with these results.

Finally, we provide novel asymptotically exact inference for the average treatment
effect under joint finely stratified sampling and assignment, using a collapsed-strata1 type
estimator (Hansen et al. (1953)). These inference methods allow experimenters to fully
exploit the efficiency gains from both finely stratified sampling and assignment. The use
of non-constant sampling proportions q(x) produces discontinuities in the propensity-
weighted outcome functions, introducing new technical challenges relative to previous
work. Simulations and an empirical application to N = 9 papers recently published in
top journals in economics demonstrate the value of our proposed methods.

1.1 Related Literature

Our sampling model is related to the classical literature on survey sampling, e.g. as sur-
veyed in Cochran (1977) and Lohr (2021). In contemporaneous work, Yang et al. (2021)
propose a two-stage design using rerandomization for both sampling and assignment.
Under rerandomization, difference-of-means estimation is asymptotically slightly less ef-
ficient than ex-post linear covariate adjustment. By contrast, we show that two-stage
fine stratification is asymptotically equivalent to nonparametric covariate adjustment for
the imbalances in both the sampling and assignment variables. Proposition 3.12 provides
a formal equivalence statement.

1See also Abadie and Imbens (2008) and Bai et al. (2021) for related results in the context of matched
pairs assignment.
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For an overview of experimental design theory, see Rosenberger and Lachin (2016) or
Athey and Imbens (2017). A representative sample of recent work on stratified treatment
assignment includes Imai et al. (2009), Bugni et al. (2018), Fogarty (2018), Wang et al.
(2021), Bai et al. (2021), de Chaisemartin and Ramirez-Cuellar (2021), Bai (2022), and
Tabord-Meehan (2022). For treatment assignment, our work is most related to Bai
(2022), who introduces finely stratified designs for constant propensity p = a/k and
univariate stratification variables. Aside from stratification, other recent proposals for
balanced treatment assignment include Kasy (2016), Kallus (2017), Li et al. (2018),
Krieger et al. (2019), and Harshaw et al. (2021). We explicitly compare with some of
these methods in Remark 3.4.

Our results on design using a pilot study is related to previous results in Hahn
et al. (2011), Bai (2022), Tabord-Meehan (2022), and Kasy and Sautmann (2021). We
provide detailed comparisons in Section 5 below. Our inference results are related to
the method of collapsed-strata in Hansen et al. (1953) and its modern variants studied
in Abadie and Imbens (2008) and Bai et al. (2021).

The rest of the paper is organized as follows. Section 2 introduces notation and
discusses our matching algorithm. Section 3 states our main asymptotic results, includ-
ing the equivalence with nonparametric adjustment. Section 4 formalizes and solves the
optimal stratification and finite sample optimal design problems. Section 5 discusses
design using a pilot study. Section 6 provides our inference methods. Our empirical
results are presented in Section 7, and recommendations for practice in Section 8.

2 Motivation and Description of Method

Consider running an experiment to estimate the average treatment effect (ATE). There
are n eligible units, with observed baseline covariates (Xi)

n
i=1. We wish to sample pro-

portion q ∈ (0, 1] of these units to participate in the experiment. Denote Ti = 1 if a
unit is sampled and Ti = 0 otherwise. Sampled units are then assigned to treatment
or control Di ∈ {0, 1}. Let Yi(d) denote the potential outcome of unit i for d ∈ {0, 1}.
Since outcomes are only observed for participating units2 we may write

Yi = Ti[DiYi(1) + (1−Di)Yi(0)].

2If control outcomes are costlessly observed for all units, the sampling problem becomes trivial. We
still contribute novel assignment designs in this case.
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We focus on estimation and inference for the population ATE = E[Y (1)−Y (0)], model-
ing the n eligible units (Xi, Yi(0), Yi(1))ni=1 ∼ F as an iid sample from a superpopulation
of interest. For example, the eligible units could be n = 1000 respondents to an online
advertisement to participate in an experiment with a budget constraint of 100 partic-
ipants. In this context, the variable Ti ∈ {0, 1} models which of the n = 1000 units
we choose to include in the experiment. In some applications, the eligible units may
comprise the entire population of interest. For example, the units i = 1, . . . , n may be
the entire population of villages in a country, which we sample to obtain the participat-
ing villages. To accommodate such applications, Section 9.1 in the appendix presents
design-based versions of our main results, targeting the sample average treatment effect
SATE = n−1

∑n
i=1 Yi(1) − Yi(0) in the eligible population. Here, we define the SATE

over the entire eligible population i = 1, . . . , n that we are allowed to sample from, not
just the smaller set of units that are chosen to participate in the experiment {i : Ti = 1}.

Our goal is to sample a representative subset of the eligible units and assign them to
treatment and control in a way that finely balances the baseline covariates (Xi)

n
i=1. To

do so, we introduce a new family of finely stratified designs that generalize the principle
of matched pairs randomization to arbitary propensity scores p(x) = P (D = 1|X = x),
with continuous or discrete covariates in general dimension. We also use these new
designs for finely stratified sampling, allowing us to implement arbitrary heterogeneous
sampling propensities q(x) = P (T = 1|X = x), while finely balancing covariates between
the sampled and non-sampled units. The basic building block of our method is a matched
k-tuples design, which uses the baseline covariates to match units into homogeneous
groups of k, randomly assigning a out of k units in each group to T = 1 during sampling
or D = 1 during assigment. We formally define the method in the context of finely
stratified sampling in the next definition.

Definition 2.1 (Local Randomization). Let q = a/k with gcd(a, k) = 1. Partition
the eligible units into groups with |g| = k, so that {1, . . . , n} =

⋃
g g disjointly. In

general, there may be one remainder group with |g| < k. Let ψ(X) ∈ Rd be a vector of
stratification variables, and suppose that the groups are homogeneous in the sense that

n−1
∑
g

∑
i,j∈g

|ψ(Xi)− ψ(Xj)|22 = op(1) (2.1)

Require that the groups only depend on the stratification variable values ψ1:n = (ψ(Xi))
n
i=1,

and data-independent randomness πn, so that g = g(ψ1:n, πn). Independently over all
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Figure 1: Sampling groups and variables for T1:n ∼ Loc(ψ, q) with q = 3/8.

groups with |g| = k, draw sampling variables (Ti)i∈g by setting Ti = 1 for exactly a

out of k units, completely at random. For units in the remainder group with |g| < k,
draw Ti iid with P (Ti = 1) = a/k. We say that such a design implements q locally with
respect to ψ(x), denoting T1:n ∼ Loc(ψ, q).

Equation 2.1 generalizes a similar condition in Bai et al. (2021) for the case of
matched pairs k = 2. We discuss matching algorithms and their associated homogeneity
rates in Section 2.1 below. Consider sampling and assignment propensities q = a/k

and p = a′/k′. In the rest of the paper, we study treatment effect estimation under a
two-stage procedure:

(1) Sample eligible units T1:n ∼ Loc(ψ, q).

(2) Assign treatments D1:n ∼ Loc(ψ, p) to the sampled units {i : Ti = 1}.

This two-stage procedure is illustrated in Figures 1 and 2, using data from an elec-
tion experiment in Turkey reported in Baysan (2022). Each color represents a different
group of units formed during sampling and assignment. For example, in Figure 1 we
form groups of size |g| = 8, randomly sampling 3 out of 8 units from each group to
“represent” that group in the experiment. The sampled units are shown in blue in the
figure on the right. In figure 2, we match the sampled units into groups of k′ = 4,
assigning 3 out of 4 to D = 1 in each group.
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Figure 2: Assignment groups and variables for D1:n ∼ Loc(ψ, p) with p = 3/4.

Section 3.2 presents the most general version of our method, allowing different
stratification variables ψ1 and ψ2 to be used for sampling and assignment, as well as
varying sampling and assignment propensities q(x), p(x). Optimal choice of stratification
variables for sampling and assignment is discussed in Section 3. Our framework enables
unified asymptotics and inference for a wide variety of different designs, as shown in the
examples below.

Example 2.2 (Matched Tuples). Suppose n = 1000 individuals from a target popula-
tion sign up to participate in an experiment, providing basic demographic information
(Xi)

n
i=1. There are only resources for 300 units to be enrolled, so q = 3/10. Among these

300 units, p = 1/4 will be assigned to the more costly treatment and 3/4 to control. We
sample using the design T1:n ∼ Loc(ψ, 3/10), which matches the 1000 eligible units into
homogeneous groups of 10 and randomly sets Ti = 1 for 3 out of 10 units in each group.
We assign treatments D1:n ∼ Loc(ψ, 1/4) to the

∑
i Ti = 300 sampled units, matching

them into homogeneous tuples of four and assigning 1 out of 4 in each tuple to Di = 1.

Example 2.3 (Complete Randomization). We say that variables T1:n are completely
randomized with probability q if T1:n is drawn uniformly from all vectors t1:n with ti = 1

for exactly proportion q of the units. Formally, we have P (T1:n = t1:n) = 1/
(
n
qn

)
for all

such vectors. We denote T1:n ∼ CR(q) and D1:n ∼ CR(p) for sampling and assignment,
respectively. Complete randomization may be obtained in our framework by setting
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ψ = 1 and forming groups |g| = k at random, which automatically satisfies Equation
2.1. For example, assigning 2 out of 3 units in each group to treatment gives a “random
matched triples” representation of complete randomization with p = 2/3.

Example 2.4 (Coarse Stratification). The procedure in Definition 2.1 produces n/k
groups of k units that are tightly matched in ψ(X) space, suggesting fine stratification.
However, coarsely stratified designs with a fixed strata S(X) ∈ {1, . . . ,m} can also be
obtained in this framework by setting ψ(X) = S(X) and matching units with the same
S(X) value into groups at random. Coarse stratification was previously studied using
different methods in Bugni et al. (2018). We extend their results in Example 3.5 below,
allowing coarse stratification at both the sampling and assignment stages.

Remark 2.5 (Sampling Centroids). It’s also possible to reverse the order of our two-
stage procedure. For example, if q = a/k and p = a′/k′ we can first match the eligible
units i = 1, . . . , n into groups of size k′, forming the group centroids ψ̄g = (k′)−1

∑
i∈g ψi.

Next, we match these group centroids themselves into homogeneous groups of size k.
For each group of k centroids, we randomly sample a of the centroids, and their corre-
sponding groups of k′ units, into the experiment. Finally, we assign a′ out of k′ units
in each sampled group to treatment. Intuitively, this procedure allocates more of the
finite “match quality” in the data set towards balanced assignment, making the assign-
ment groups as tight as possible. We conjecture that this procedure is asymptotically
equivalent to the one studied in this paper, but leave formal study to future work.

2.1 Matching Algorithms

One possibility is to treat the left hand side of Equation 2.1 as an objective function and
minimize it over all partitions of the units into groups of k. Denoting d(ψ) = dim(ψ),
Theorem A.1 in the appendix shows that if E[|ψ(X)|α2 ] <∞ for some α > d(ψ) + 1 then
the optimal groups satisfy

min
(g)

n−1
∑
g

∑
i,j∈g

|ψi − ψj|22 = Op(n
2/α−2/(d(ψ)+1)) = op(1) (2.2)

If ψ(X) is bounded this becomes Op(n
−2/(d(ψ)+1)), sharpening the rate achieved under

a boundedness assumption in previous work on matched pairs (Bai et al. (2021)). For
k = 2, the optimal groups are computable in O(n3) time using an algorithm due to
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Derigs (1988).3 Efficient algorithms for computing the optimal groups for general k are
not available, and we expect the problem to be NP-hard.4

Iterative Matching - Instead of calculating the optimal partition, for k > 2 we
iteratively apply Derigs’ algorithm to match units into larger groups. For fixed k, this
procedure can be shown to satisfy the same rate in Equation 2.2 above. There are many
ways to implement iterative pairing for each k. For example, k = 5 can be obtained
by pairwise matching of 4-tuples to 1-tuples, or 3-tuples to 2-tuples and so on. This is
shown in the figure below, where each level of the tree represents a call to the optimal
pairing algorithm.

5

4

2

1 1

2

1 1

1

1

1 0

0

5

2

1

1 0

1

1 0

3

2

1 1

1

1 0

Before the jth algorithm call, we add a certain number of “empty centroids”, rep-
resented by the 0’s in the figure. We also prohibit certain types of matches in order to
guarantee the desired sequence of group sizes. For example, at the second level of the
tree on the left, we set the distance to +∞ between groups of size |g| = 2 and |g′| = 1,
size |g| = 1 and |g′| = 1, and size |g| = 0 and |g′| = 0. There are many choices of such
cardinality trees for each k, not all of which can be feasibly implemented using these type
of constraints. We provide a canonical way of generating such sequences, as well as the
required constraints at each algorithm call, that is guaranteed to implement the desired
group cardinality k. Technical details are provided in Section 9.2 in the appendix.

Large Experiments. This algorithm is highly tractable for small and medium
experiment sizes. For example, matching n = 500 units into 5-tuples takes 23 seconds on
a laptop computer, while n = 2000 takes about 24 minutes. However, larger experiments
quickly become intractable. For example, Domurat et al. (2021) has n = 87394, which
would take about 3.8 years to match using the algorithm described above. To enable
fine stratification in larger experiments, one possibility is to exploit the global shape of
the baseline covariate data to rule out matches between distant units. To do so, let v1

be the first principal component of the stratification variables (ψi)
n
i=1 and consider the

following procedure:
3We use the min-weight-matching implementation from the NetworkX 3.1 module in Python.
4See Karmakar (2022) for hardness results in a related problem.
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(1) Partition (ψi)
n
i=1 into K folds by (1/K)th quantile of the sorted projections v′1ψi.

(2) Separately in each fold, run the iterative Derigs (1988) procedure above.

Intuitively, we use the first principal component to sort units by their projection
along a natural “direction” through the dataset. This exploits the idea that good matches
are unlikely between non-adjacent folds: Figure 4 in the appendix gives a visual rep-
resentation. By parallelizing over K = 80 folds, a dataset of size n = 87394 can be
matched about 5 minutes. The original version of our procedure and this “PCA folds”
version are asymptotically equivalent for fixed K. We focus on the original version in
the theory that follows.

3 Asymptotic Theory

This section contains our main asymptotic results, showing nonparametric efficiency
gains from both finely stratified sampling and assignment. First, we state our main
assumption.

Assumption 3.1. The moments E[Y (d)2] <∞ for d = 0, 1 and E[|ψ(X)|α2 ] <∞ hold
for some α > dim(ψ) + 1.

Previous work on fine stratification has required Lipschitz continuity of the outcome
function E[Y (d)|ψ(X) = ψ] and variance Var(Y (d)|ψ(X) = ψ), as well as boundedness
of the stratification variables ψ(X).5 We provide a novel technical analysis that allows
all of these assumptions to be removed.

Estimation. Let θ̂ be the regression coefficient on Di in Yi ∼ 1 + Di, estimated
in the sampled units {i : Ti = 1}. This is just the usual difference-of-means estimator.
Before continuing to our asymptotic results, we state a variance decomposition for θ̂ that
will be used extensively in what follows. Let c(ψ) = E[Y (1) − Y (0)|ψ(X) = ψ] denote
the conditional average treatment effect (CATE) and σ2

d(ψ) = Var(Y (d)|ψ(X) = ψ) the
heteroskedasticity function. Define the balance function

b(ψ; p) = E[Y (1)|ψ(X)]

(
1− p
p

)1/2

+ E[Y (0)|ψ(X)]

(
p

1− p

)1/2

. (3.1)

5For example, see Bai et al. (2021), Bai et al. (2023).
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Suppose that sampling and assignment are both completely randomized, T1:n ∼
CR(q) and D1:n ∼ CR(p), as in Example 2.3. Let nT =

∑
i Ti denote the experiment

size. Our work shows that
√
nT (θ̂ − ATE)⇒ N (0, V ) with variance

V = Var(c(ψ)) + Var(b(ψ; p)) + E

[
σ2

1(ψ)

p
+
σ2

0(ψ)

1− p

]
. (3.2)

We think of the first term as the variance due to treatment effect heterogeneity,
in particular, the heterogeneity predictable by the stratification variables. The second
term is the variance due to random assignment, which arises from the chance covari-
ate imbalances between treatment and control units created by complete randomization
D1:n ∼ CR(p). The results in the next section show how stratified sampling and assign-
ment nonparametrically dampen the each component of this variance expansion.

3.1 Constant Sampling and Assignment Propensities

In this section we state a central limit theorem for ATE estimation for the simplest case
where the sampling and assignment propensities q = a/k and p = a′/k′ are constant.
This result quantifies the efficiency gains from stratification in each stage of the design.
Remarks 3.7 and 3.9 draw connections between our findings and classical results on semi-
parametric efficiency in the analysis of observational data. Section 3.2 below provides
the most general version of the results in this section.

Theorem 3.2. Require Assumption 3.1. If sampling and assignment designs are locally
randomized T1:n ∼ Loc(ψ, q) and D1:n ∼ Loc(ψ, p), then

√
nT (θ̂ − ATE)⇒ N (0, V )

V = qVar(c(ψ)) + E

[
σ2

1(ψ)

p
+
σ2

0(ψ)

1− p

]
.

Comparing to Equation 3.2 above, the variance component Var(b(ψ; p)) due to co-
variate imbalance between the treatment arms is now asymptotically negligible. The
variance due to treatment effect heterogeneity Var(c(ψ)) is now dampened by the sam-
pling proportion q ∈ (0, 1]. To see why, observe that the normalization

√
nT (θ̂ − ATE)

effectively holds the experiment size nT constant as we vary q. Holding nT constant, the
number of eligible units n ≈ nT/q grows as q → 0. For small q, there are many eligible
units to sample from, allowing us to choose a highly representative sample of experi-
mental participants. Our theory shows that this reduces the variance due to treatment
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effect heterogeneity that is predictable by the stratification variables. Another way to
understand this is that under finely stratified sampling, the first variance component
scales with the larger size n of eligible units, rather than the true experiment size nT .
This effectively “boosts” the experiment size for this component of the variance.

Example 3.3 (Matched Tuples). In Example 2.2 above, we sampled nT = 300 of
n = 1000 eligible units using the stratified design T1:n ∼ Loc(ψ, q) with q = 3/10. Next,
we assigned 1/4 of the sampled units to treatment by D1:n ∼ Loc(ψ, 1/4). Theorem 3.2
shows that under this design

√
nT (θ̂ − ATE)⇒ N (0, V ) with asymptotic variance

V = (3/10) Var(c(ψ)) + E

[
σ2

1(ψ)

1/4
+
σ2

0(ψ)

3/4

]
.

Nonparametric Regression by Design. If q = 1 or sampling is completely
randomized T1:n ∼ CR(q)6 then the asymptotic variance in Theorem 3.2 is

V = Var(c(ψ)) + E

[
σ2

1(ψ)

p
+
σ2

0(ψ)

1− p

]
.

This is exactly the Hahn (1998) semiparametric variance bound for ATE with iid ob-
servations (Y,D, ψ(X)).7 We achieve the semiparametric variance bound with a simple
difference-of-means estimator, without the need for nonparametric re-estimation of the
known propensity (Hirano et al. (2003)) or covariate adjustment with well-specified out-
come models (Robins and Rotnitzky (1995)). We can interpret this result as saying
that finely stratified treatment assignment D1:n ∼ Loc(ψ, p) does nonparametric covari-
ate adjustment “by design.” See Proposition 3.12 below for a more formal equivalence
result.

Representative Sampling. If sampling is locally randomized T1:n ∼ Loc(ψ, q),
then the variance due to treatment effect heterogeneity decreases from Var(c(ψ)) to
qVar(c(ψ)). In this case, V can be strictly smaller than the classical semiparametric
variance bound. Intuitively, by using the additional covariates (ψ(Xi))

n
i=1 to select a

representative sample, we finely represent the distribution of treatment effect levels
(c(ψi))

n
i=1 in the larger eligible population into our experiment. More formally, consider

an oracle setting where we observe the treatment effect level c(ψi) for each sampled unit
Ti = 1, estimating the ATE by the sampled average θ̂ = (1/nT )

∑
i Tic(ψi). Our analysis

6The latter statement follows from the more general results in Section 3.2.
7Recent work in Armstrong (2022) shows that this efficiency bound also holds in settings with

covariate-adaptive randomization, including the designs considered here.
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shows that if T1:n ∼ Loc(ψ, q) then

(1/nT )
n∑
i=1

Tic(ψi) = En[c(ψi)] + op(n
−1/2).

Because of this, the sampled average (1/nT )
∑

i Tic(ψi) behaves like the infeasible average
En[c(ψi)] over all eligible units, including those not sampled into the experiment. This
nonparametrically dampens the variance due to treatment effect heterogeneity from
Var(c(ψ)) to qVar(c(ψ)) for q ∈ (0, 1].

Remark 3.4 (Comparison with Other Designs). For the case without sampling, we can
compare our results on fine stratification to other covariate-adaptive assignment designs.
Li et al. (2018) shows that under rerandomized treatment assignment, θ̂ is asymptot-
ically (almost) as efficient as interacted linear regression adjustment, effectively doing
linear regression “by design.” Bugni et al. (2019) show that coarsely stratified assignment
ψ(X) ∈ {1, . . . ,m} is asymptotically equivalent to an interacted linear regression ad-
justment that includes all strata indicators as covariates. Harshaw et al. (2021) suggest
a novel Gram-Schmidt walk design with MSE bounded by a quantity related to linear
ridge regression. By contrast, we show that the fine stratification D1:n ∼ Loc(ψ, p) does
nonparametric regression adjustment by design.

Extending Bugni et al. (2019), the next example proves an equivalence between
coarse stratification and linear regression adjustment in the case where sampling and
asignment are both coarsely stratified.

Example 3.5 (Coarse Stratification). If T1:n ∼ Loc(S, q) and D1:n ∼ Loc(S, p) for
a fixed stratification S(X) ∈ {1, . . . ,m}, Theorem 3.2 shows that

√
nT (θ̂ − ATE) ⇒

N (0, VS) with variance

VS = qVar(c(S)) + E

[
σ2

1(S)

p
+
σ2

0(S)

1− p

]
. (3.3)

Alternatively, suppose sampling T1:n ∼ CR(q) and assignment D1:n ∼ CR(p) are
completely randomized (Example 2.3), and we instead estimate the ATE using ex-post
linear adjustment for the covariate imbalances due to both sampling and assignment.
To define the adjustment, let zi = (1(Si = k))m−1

k=1 denote leave-one-out strata indicators
and their de-meaned versions z̃i = zi − En[zi|Ti = 1]. Consider the linear regression
Y ∼ 1 +D + z̃ +Dz̃ and let τ̂ denote the coefficient on D and β̂ the coefficient on Dz̃.
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Define the sampled covariate mean z̄T=1 = En[zi|Ti = 1] and eligible covariate mean
z̄ = En[zi] and consider the doubly-adjusted estimator

θ̂adj = τ̂ − β̂′(z̄T=1 − z̄).

We study this estimator in the next proposition.

Proposition 3.6 (Regression Equivalence). Assume E[Y (d)2] <∞ and P (S = k) > 0

for all k ∈ [m]. If T1:n ∼ CR(q) and D1:n ∼ CR(p) then
√
nT (θ̂adj − ATE) ⇒ N (0, VS)

with VS the coarsely stratified variance in Equation 3.5.

This result shows that under coarsely stratified sampling and assignment, the simple
difference-of-means estimator θ̂ behaves like the doubly-adjusted estimator θ̂adj under
complete randomization. Proposition 3.12 in the next section generalizes this example
to the case of fine stratification and nonparametric double adjustment for both sampling
and assignment imbalances. The remainder of this subsection provides more intuition
for Theorem 3.2, connecting our results on fine stratification to the previous literature
on semiparametric efficiency.

Remark 3.7 (Efficient Influence Function). Consider expanding the difference-of-means
estimator θ̂ about the efficient influence function for the ATE. Denote the nonparametric
regression residuals εdi = Yi(d) − E[Yi(d)|ψi]. Under locally randomized sampling and
assignment

θ̂ = En[c(ψi)] + En

[
Diε

1
i

p
+

(1−Di)ε
0
i

1− p

∣∣∣∣Ti = 1

]
+ Covn(Ti, c(ψi))︸ ︷︷ ︸

Sampling

/q + Covn(Di, b(ψi)|Ti = 1)︸ ︷︷ ︸
Assignment

/cp +Op(n
−1).

If Ti = 1 for i = 1, . . . , n then the first two terms are exactly the efficient influence func-
tion for the ATE. The third term is the estimator error due to correlation between the
sampling variables Ti and treatment effect heterogeneity c(ψi) among the eligible units.
The fourth term is the estimator error due to correlation between treatment assignments
Di and outcome heterogeneity among the sampled units. Without stratification, the
chance covariate imbalances produce by randomization contribute non-negligible asymp-
totic variance, and the errors

√
nCovn(Ti, c(ψi)) ⇒ N (0, v) with v > 0. By contrast,

we show that if T1:n ∼ Loc(ψ, q) then the sampling errors
√
nCovn(Ti, F (ψi)) = op(1)

for any function E[F (ψ)2] <∞, and similarly for the assignment term. Because of this,
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(a) Completely Randomized (b) Locally Randomized

Figure 3: Covariates ψi ∼ Unif([0, 1]2), n = 1000 and sampling and assignment propen-
sities q = 1/5 and p = 2/3. For complete randomization, the realized propensities
(Remark 3.9) widely diverge from q and p in certain parts of the space.

the unadjusted estimator θ̂ is first-order equivalent to the efficient influence function for
the ATE under local randomization if q = 1. If q < 1, the situation is even better, and
the first term behaves like the infeasible average En[c(ψi)] over all eligible units.

Remark 3.8 (Table One). Applied researchers often report tests of covariate balance in
“table one.” Consider testing for balance of a covariate F (ψi). One common approach is
to report a p-value for the test that β = 0 in the regression F (ψi) = â+ β̂Di + ei, using
the normal limit

√
nβ̂ ⇒ N (0, v). By contrast, if D1:n ∼ Loc(ψ, p) then

√
nβ̂ = op(1)

for any covariate E[F (ψ)2] < ∞, showing that the level of such a test converges to
zero. Intuitively, this shows that fine stratification with respect to ψ(X) balances any
square-integrable transformation F (ψ) to order op(n−1/2).

Remark 3.9 (Realized Propensity Score). For any set A with P (ψ ∈ A) > 0 define the
realized sampling proportions in A by q̂A = En[Ti|ψi ∈ A]. If sampling is completely ran-
domized, the discrepancy between expected and realized propensities q−q̂A = Op(n

−1/2),
so that q is implemented with errors of order 1/

√
n. This is illustrated in Figure 3, where

the realized sampling and assignment propensities widely diverge from their nominal lev-
els in certain regions of the space. Such fluctuations of q̂A about q increase estimator
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variance. One way to fix this problem is to nonparametrically re-estimate the real-
ized sampling and assignment proportions q̂(ψ) and p̂(ψ) everywhere in the space, as in
Hirano et al. (2003), using the propensity weighting

θ̂ipw = En

[
Ti(Di − p̂(ψi))Yi
q̂(ψi)(p̂− p̂2)(ψi)

]
For experiments, we provide a simpler solution, showing that fine stratification gets
the realized propensities right at design-time. In particular, our analysis shows that if
T1:n ∼ Loc(ψ, q) then the gap between the realized and target propensities q − q̂An =

op(n
−1/2), even for a shrinking sequence of sets with P (ψ ∈ An) → 0 slowly enough.

Because of this, we think of the design T1:n ∼ Loc(ψ, q) as a “local” implementation of
the propensity q with respect to ψ(X).

3.2 Varying Sampling and Assignment Propensities

This section describes the most general version of our method, providing finely strati-
fied designs with heterogeneous sampling and assignment proportions q(x), p(x). The
asymptotics developed in this section allows us to formulate and solve the problem of
optimal stratification with heterogeneous costs in Section 4 below.

First, we formally define the procedure. Suppose that q(x) ∈ {al/kl : l ∈ L} for
some finite index set L. Similarly, suppose p(x) ∈ {a′l/k′l : l ∈ L′} with |L′| < ∞. Ex-
tending our definition, let T1:n ∼ Loc(ψ, q(x)) denote the following double stratification
procedure:

(1) Partition {1, . . . , n} into propensity strata Sl ≡ {i : q(Xi) = al/kl}.

(2) In each propensity stratum Sl, draw samples (Ti)i∈Sl ∼ Loc(ψ, al/kl).

Equivalently, we partition each propensity stratum Sl into groups g ⊆ Sl of size kl
such that Sl =

⊔
g∈Gl g and the homogeneity condition

n−1
∑
g

∑
i,j∈g

|ψi − ψj|22 = n−1
∑
l

∑
g∈Gl

∑
i,j∈g

|ψi − ψj|22 = op(1)

In practice, we simply run our matching algorithm separately in each propensity stratum
Sl, and draw (Ti)i∈g ∼ CR(al/kl) independently for each g ∈ Gl. Treatment assignment
D1:n ∼ Loc(ψ, p(x)) is defined identically, partitioning only the units {i : Ti = 1}
sampled into the experiment.
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Example 3.10 (Budget and Welfare Constraints). Consider a village level experiment,
where collecting outcome data is either high cost H or low cost L, depending on village
proximity and labor costs. Due to budget constraints, we decide to sample q(L) = 1/2 of
the low cost villages but only q(H) = 1/10 of the high cost villages. To do so, we match
the high cost villages into 10-tuples and the low cost villages into pairs using publicly
available covariates ψ1. We randomly sample one village from each 10-tuple and one
from each pair. Before assigning treatments, we collect additional survey covariates ψ2

in each sampled village Ti = 1. We label the sampled villages as those likely to benefit
most M and least L from the intervention according to our prior. Local policymakers
insist on the targeted assignment propensity p(M) = 2/3 and p(L) = 1/3. We implement
this assignment propensity using matched triples on ψ2, assigning D = 1 to 2/3 of the
villages in each M -type triple and 1/3 in each L-type triple.

Before stating our main result, we extend the definition of our estimator to accom-
modate varying propensities. Define the double IPW estimator

θ̂2 = En

[
TiDiYi

q(ψi)p(ψi)

]
− En

[
Ti(1−Di)Yi

q(ψi)(1− p(ψi))

]
(3.4)

If p(x) = p and q(x) = q are constant, then θ̂2 = θ̂ + Op(n
−1), where θ̂ is the

difference-of-means estimator studied in the previous section.8 Then abusing notation
we denote both estimators by θ̂. The following theorem gives our asymptotic results
for fine stratification with varying propensities, extending the fixed propensity results
in Theorem 3.2 above. We begin with the special case ψ1 = ψ2 = ψ and q = q(ψ),
p = p(ψ), all non-random.

Theorem 3.11 (CLT). Suppose Assumption 3.1 holds. Assume sampling and assign-
ment T1:n ∼ Loc(ψ, q(ψ)) and D1:n ∼ Loc(ψ, p(ψ)). Then

√
nT (θ̂ − ATE)⇒ N (0, V )

V = E[q(ψ)]

(
Var(c(ψ)) + E

[
1

q(ψ)

(
σ2

1(ψ)

p(ψ)
+

σ2
0(ψ)

1− p(ψ)

)])
If q = 1 then this is exactly the Hahn (1998) semiparametric variance bound for

ATE with iid observations (Y,D, ψ(X)) and propensity p(ψ). This shows that under
fine stratification the population IPW estimator is already semiparametrically efficient,
with no need to nonparametrically re-estimate the known propensities q(ψ) and p(ψ)

8This is because En[Di] = p+O(n−1) for stratified designs. It would be false for Di
iid∼ Bernoulli(p).
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as in Hirano et al. (2003). Next consider the efficiency gain from stratified sampling.
The overall sampling proportion nT/n has nT/n = E[q(ψ)] + op(1). Then defining q̄ =

E[q(ψ)], local randomization reduces the variance due to treatment effect heterogeneity
from Var(c(ψ)) to q̄Var(c(ψ)) for q̄ ∈ (0, 1], just as in the constant propensity case.

Regression Equivalence. Theorem 3.11 shows that if q = 1 then difference-of-
means is semiparametrically efficient. To the best of our knowledge, no such efficiency
bound is available for joint finely stratified sampling and assignment T1:n ∼ Loc(ψ, q(ψ))

and D1:n ∼ Loc(ψ, p(ψ)) with q 6= 1. Instead, we show a direct equivalence between
unadjusted estimation under fine stratification and nonparametric regression adjustment
under an iid design. In particular, the asymptotic variance V above is the same as that
achieved by a doubly-robust estimator that adjusts for covariate imbalances during both
sampling and assignment. To state the result, consider regression estimators m̂d(ψ) for
md(ψ) = E[Y (d)|ψ]. Define the doubly-augmented IPW (2-AIPW) estimator

θ̂adj = En[m̂1(ψi)− m̂0(ψi)] + En

[
TiDi(Yi − m̂1(ψi))

q(ψi)p(ψi)
− Ti(1−Di)(Yi − m̂0(ψi))

q(ψi)(1− p(ψi))

]

θ̂adj adjusts for covariate imbalances due to both sampling and assignment. We im-
plement the estimator using cross-fitting, similar to Chernozhukov et al. (2017). See the
proof for details. If q = 1 this reduces to the familiar AIPW estimator for the ATE. The
next result provides an equivalence between doubly-robust nonparametric adjustment
under an iid design and unadjusted estimation under a finely stratified design.

Proposition 3.12 (Regression Equivalence). Require Assumption 3.1. Suppose the es-
timators |m̂d − md|2,ψ = op(1) are well-specified and consistent. If the design is iid
Ti

iid∼Bernoulli(q(ψi)) and Di
iid∼Bernoulli(p(ψi)) then

√
nT (θ̂adj − ATE) ⇒ N (0, V ) with

the variance V the same as under fine stratification in Theorem 3.11.

Intuitively, Proposition 3.12 shows that finely stratified sampling and assignment
makes the unadjusted estimator θ̂ as efficient as a more complicated estimator that ad-
justs nonparametrically for covariate imbalances during both sampling and assignment.

Estimated Design Variables. We wish to formally accommodate the case where
design variables ψ, q(ψ), p(ψ) are estimated using previously collected data. To do so,
define the random element ξ ⊥⊥ (Xi, Yi(1), Yi(0))ni=1 and let ψ = ψ(X, ξ), p = p(ψ, ξ),
and q = q(ψ, ξ). For example, we could let ξ = (m̂d)d=0,1 be regression estimates of
md(x) = E[Y (d)|X = x] from a pilot experiment and set ψ(X, ξ) = (m̂0(X), m̂1(X)).
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Define c(ψ, ξ) = E[Y (1) − Y (0)|ψ, ξ] and σ2
d(ψ, ξ) = Var(Y (d)|ψ, ξ). The proof of

Theorem 3.11 shows that if T1:n ∼ Loc(ψ, q(ψ, ξ)) and D1:n ∼ Loc(ψ, p(ψ, ξ)) then
√
nT (θ̂ − ATE)|ξ ⇒ N (0, V (ξ)) with conditional asymptotic variance

V (ξ) = E[q(ψ, ξ)]

(
Var(c(ψ, ξ)) + E

[
1

q(ψ, ξ)

(
σ2

1(ψ, ξ)

p(ψ, ξ)
+

σ2
0(ψ, ξ)

1− p(ψ, ξ)

)])
(3.5)

All expectations and variances are conditional on ξ. The inference methods provided
in Section 6 are asymptotically exact conditional on ξ. Note that marginally over both
our experiment and the previous data ξ, the estimator is asymptotically mixed normal
√
nT (θ̂ − ATE)⇒ Z, where Z has characteristic function E[exp(−1

2
t2V (ξ))].9

Collecting Data After Sampling. In practice, experimenters may want to use
different stratification variables ψ1 for sampling and ψ2 for assignment with ψ1 6= ψ2.
For example, ψ1 may include publicly available administrative data, while ψ2 includes
additional survey covariates collected after sampling units into the experiment. To
accommodate this, next we state our most general version of Theorem 3.11. Suppose
Assumption 3.1 holds and let sampling and assignment T1:n ∼ Loc(ψ1, q(x)) and D1:n ∼
Loc(ψ2, p(x)). If q(x) = q(ψ1), require ψ1 ⊆ ψ2. Otherwise, require (ψ1, q) ⊆ ψ2. Then
√
nT (θ̂ − ATE)⇒ N (0, q̄V ) with q̄ = E[q(X)] and asymptotic variance V = V1 + V2

V1 = Var(c(X)) + E

[
1

q(X)

(
σ2

1(X)

p(X)
+

σ2
0(X)

1− p(X)

)]
V2 = E

[
1− q(X)

q(X)
Var(c(X)|ψ1, q)

]
+ E

[
1

q(X)
Var(b(X)|ψ2, p)

]
(3.6)

The variance V does not have a simple form like in the special cases considered above if
ψ1 6= ψ2. Instead, we expand V relative to the efficient variance V1, which we conjecture
is the semiparametric efficiency bound in this setting. If ψ1 = ψ2 = ψ, and q = q(ψ),
p = p(ψ) then V can be rearranged into the form in Theorem 3.11. The requirement that
the stratification is increasing10 ψ1 ⊆ ψ2 is subtle. We defer this technical discussion to
Remark 9.1 in the appendix.

Optimal Stratification Variables. Inspecting the variance V2 in Equation 3.6
shows that the minimal dimension efficient stratification variables are ψ∗1 = c(X) and
ψ∗2 = (c(X), q(X), b(X)). In this case, V2 is identically zero, and V = V1, the conjectured

9This mixed normal limit was also observed by Cai and Rafi (2023) in a setting with iid treatments.
10In fact, we just require that ψ1 = h(ψ2) for a measurable function h.
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semiparametric efficiency bound. We include q(X) in ψ∗2 to satisfy the subvector condi-
tion (ψ1, q) ⊆ ψ2. If q(x) = q(ψ1), we can just take ψ∗2 = (c(X), b(X)) under the weaker
condition ψ1 = h(ψ2) for some measurable h. In practice, these optimal ψ∗1 and ψ∗2 are
not known. This suggests letting ψ1(X) be a small subvector of the baseline covariates
expected to be most predictive of treatment effect heterogeneity, and ψ2(X) a subvector
expected to be predictive of outcomes.11 If c(X) = F (ψ1(X)) for some function F , then
the choice ψ1(X) is asymptotically optimal. If none of the baseline covariates predict
treatment effect heterogeneity, so that c(X) is constant, then completely randomized
sampling with ψ∗1 = 1 is efficient. We discuss pilot estimation of ψ∗1 and ψ∗2 in Section
5.2.

Remark 3.13 (Curse of Dimensionality). Setting ψ1(X) = ψ2(X) = X in Equation 3.6
also minimizes the asymptotic variance V . However, there is a curse of dimensionality
when matching on many baseline covariates. In particular, our analysis shows that
if E[Y (d)|X = x] is Lipschitz continuous, then the finite sample variance converges
to the asymptotic limit at rate nVar(θ̂) = V + Op(n

−2/(dim(ψ)+1)), which may be slow
even in moderate dimensions. Because of this, for fixed n the variance Var(θ̂) may
be U-shaped in the dimension of the stratification variables, since matching on many
irrelevant variables reduces match quality on the relevant variables. This motivates the
search for stratification variables ψ1(x) and ψ2(x) of small dimension that minimize V .

Remark 3.14 (Sampling Subordinate Assignment). Suppose the sampling propensity
q is constant, p = 1/2 and consider a matched pair g = {i, j} formed during treat-
ment assignment. For a well-matched pair with |ψi − ψj|2 small, the balance function
difference |b(ψi) − b(ψj)| will also be small as long as b(ψ) is continuous. This can be
shown to reduce the variance due to random assignment. However, if sampling propen-
sity q(ψ) is not constant, then estimator variance is determined instead by the weighted
balance function b(ψ)/q(ψ). If q(ψi) 6= q(ψj), e.g. because i and j lie just across the
boundary between different sampling propensity strata, then the weighted difference
|b(ψi)/q(ψi) − b(ψj)/b(ψj)| may be large even if |ψi − ψj|2 is small. Such boundary ef-
fects are asymptotically negligible, as shown by our theory, but can significantly inflate
finite sample variance in small experiments with many sampling strata and highly pre-
dictive covariates. One way to prevent this issue is to match units separately within
each sampling stratum {i : q(ψi) = a/k} at the assignment stage. We implement this
modification in our empirical application in Section 7 below.

11Since b(X; p) ∝ E[Y (1)|X]/p+E[Y (0)|X]/(1− p), we should prioritize predicting outcomes in the
arm assigned with lowest probability.
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4 Optimal Stratified Designs

In this section we formulate and solve the problem of optimal stratification in sur-
vey experiments, characterizing the optimal sampling and assignment propensities for
budget-constrained experimentation with heterogeneous costs. We show how to imple-
ment these optimal propensities using fine stratification and prove that such a design is
efficient. For simplicity, in what follows we restrict to the case with stratification vari-
ables ψ1 = ψ2 = ψ and sampling and assignment propensities q = q(ψ) and p = p(ψ).

4.1 Budget-Constrained Sampling Problem

In Section 3, we presented asymptotic results of the form
√
nT (θ̂ − ATE) ⇒ N (0, V )

normalized by the experiment size nT =
∑

i Ti, which is the typical normalization in
the previous literature. However, observe that the experiment size nT varies with the
sampling propensity q(ψ) in our setting, making this normalization unsuitable for our
current task of optimizing over q(ψ) to find the efficient sampling propensity. Because
of this, in what follows we instead normalize by the number of eligible units n. Since
nT/n

p→ E[q(ψ)], this just removes the multiplicative factor E[q(ψ)] from our previous
results, so that

√
n(θ̂ − ATE)⇒ N (0, V (q, p))

V (q, p) = Var(c(ψ)) + E

[
1

q(ψ)

(
σ2

1(ψ)

p(ψ)
+

σ2
0(ψ)

1− p(ψ)

)]
(4.1)

With this fixed normalization in hand, consider minimizing Equation 4.1 over all
sampling propensities q(ψ). Clearly the unconstrained solution is q∗(ψ) = 1, making
the experiment as large as possible. More generally, we can formalize the problem of
experimentation with heterogeneous costs subject to a budget constraint.

Costs. Define C(ψ; p) to be the known, potentially heterogeneous cost of including
a unit of type ψ(X) = ψ in the experiment. One natural cost specification is

C(ψ; p) = Cs(ψ) + p(ψ)C1(ψ) + (1− p(ψ))C0(ψ). (4.2)

For example, in a development economics context Cs(ψ) could be the “sampling cost” of
paying volunteers to collect outcome data in a village ψi = ψ, while C1(ψ) and C0(ψ)

are the marginal costs of assigning treatment and control, respectively.
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To finish setting up the problem, define the ex-ante heteroskedasticity function

σ̄2(ψ; p) =
σ2

1(ψ)

p(ψ)
+

σ2
0(ψ)

1− p(ψ)
(4.3)

We interpret σ̄2(ψ; p) as the expected residual variance from sampling a unit with ψi =

ψ into the experiment, prior to realization of its random treatment assignment Di ∈
{0, 1}, and similarly for the expected costs in Equation 4.2 above. For fixed assignment
propensity p(ψ), the asymptotic variance objective can be written V (q) = Var(c(ψ)) +

E[σ̄2(ψ; p)/q(ψ)]. Then the budget-constrained variance minimization problem with
budget B̄ can be written

min
0<q≤1

E

[
σ̄2(ψ; p)

q(ψ)

]
s.t. E[C(ψ; p)q(ψ)] = B̄. (4.4)

The next proposition characterizes the interior solutions to this problem. We assume
that infψ σ

2
d(ψ) ≥ c > 0 and costs C(ψ; p) ∈ [Cl, Cu] ⊆ (0,∞).

Proposition 4.1. Define the candidate solution

q∗(ψ; p) = B̄ · σ̄(ψ; p)C(ψ; p)−1/2

E[σ̄(ψ; p)C(ψ; p)1/2]
. (4.5)

If supψ q
∗(ψ) ≤ 1, then q∗ is optimal in Equation 4.4.

If the feasibility constraint supψ q
∗(ψ) ≤ 1 is violated, the optimal sampling propen-

sity may not have a simple analytical form. Remark 5.5 below provides a rounding
procedure that can be used to restore feasibility in this case. To build intuition for the
form of the solution, consider the following special cases, suppressing dependence on p.

(a) Homoskedasticity. Suppose σ2
d(ψ) = σ2

d constant for d ∈ {0, 1} and p(ψ) = p. Then
the optimal propensity q∗(ψ) = B̄ · C(ψ)−1/2/E[C(ψ)1/2] has q∗(ψ) ∝ 1/

√
C(ψ).

This provides a simple heuristic for sample allocation with heterogeneous costs.

(b) Homogeneous costs. If C(ψ) = 1, then E[q(ψ)] ≤ B̄ constrains the total proportion
of sampled units. In this case write the budget constraint B̄ = q̄. The optimal
solution has form q∗(ψ) = q̄σ̄(ψ)/E[σ̄(ψ)], with sampling propensity proportional
to the ex-ante standard deviation. In particular, we would like to oversample
(q∗(ψ) > q̄) units of type ψ(X) = ψ that have larger residual standard deviation
than the average E[σ̄(ψ)], and undersample in the opposite case.
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Optimal Spending. Under optimal sampling, the total amount spent on units of
type ψ is C(ψ)q∗(ψ)dP (ψ) ∝

√
σ̄2(ψ)C(ψ)dP (ψ). This shows that we should spend

more on units with larger ex-ante variance and larger per unit cost. However, since the
optimal propensity undersamples high cost units, spending grows as

√
C(ψ), instead of

linearly as it would if q(ψ) = q were constant.

4.2 Globally Optimal Stratification

The main result of this section studies implementation of the globally optimal stratified
design, subject to the budget constraint. In particular, we show efficiency of a finely
stratified implementation of the jointly optimal sampling and assignment propensities q∗

and p∗. In this section, we restrict to the case with costs C(ψ; p) = C(ψ) not depending
on p. See Remark 4.4 for discussion of the general case.

First, we characterize the optimal assignment propensity. For any fixed sampling
propensity q(ψ), the global minimizer of Equation 4.1 is the conditional Neyman allo-
cation p∗(ψ) = σ1(ψ)/(σ1(ψ) + σ0(ψ)). In some cases, we may only be interested in
implementing a constant assignment propensity p∗ ∈ (0, 1). If q is also constant, then

p∗ =
√
E[σ2

1(ψ)]

(√
E[σ2

1(ψ)] +
√
E[σ2

0(ψ)]

)−1

(4.6)

Compare this to the classical Neyman allocation σ1/(σ1+σ0) with σd = SD(Y (d)). In our
setting, only the residual variances σ2

d(ψ) = Var(Y (d)|ψ) enter p∗, since the fluctuations
of Y (d) predictable by ψ(X) do not contribute to first-order asymptotic variance under
fine stratification.

The jointly optimal sampling and assignment propensities are obtained by plugging
the conditional Neyman allocation p∗(ψ) = σ1(ψ)/(σ1(ψ) + σ0(ψ)) into the formula for
q∗(ψ; p) above. This gives ex-ante variance σ̄2(ψ) = (σ1(ψ)+σ0(ψ))2 and jointly optimal
sampling and assignment propensities

p∗(ψ) =
σ1(ψ)

σ1(ψ) + σ0(ψ)
q∗(ψ; p∗) = B̄

(σ1(ψ) + σ0(ψ))C(ψ)−1/2

E[(σ1(ψ) + σ0(ψ))C(ψ)1/2]
. (4.7)

The propensities p∗(ψ) and q∗(ψ) will generally need to be discretized in order to
implement them using fine stratification. To do so, we provide novel asymptotics with
both the number of distinct propensity levels Ln as well as the number of units in each
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group |g| = kn growing with the sample size n.

Definition 4.2 (Discretization). Let q∗n(ψ) and p∗n(ψ) take values in the finite approx-
imating propensity set {al/kl : l ∈ Ln} with levels Ln. Suppose that |q∗n − q∗|∞ = o(1)

and |p∗n − p∗|∞ = o(1). Define maximum group size kn = maxl∈Ln kl and require that
kn|Ln| = o(n1−dim(ψ)+1

α ) for E[|ψ(X)|α] <∞.

If ψ(X) is bounded, the final condition simplifies to kn|Ln| = o(n). For example,
one way to satisfy Definition 4.2 is to round the optimal propensities to the nearest a/kn
for some sequence kn →∞, setting q∗n(ψ) = argmin{|q∗(ψ)−a/kn| : 1 ≤ a ≤ kn−1, kn =

bn1/2−εc} and similarly for p∗n(ψ). The main theorem of this section shows that such
discretizations are asymptotically efficient.

Theorem 4.3 (Optimal Stratification). Suppose Assumption 3.1. If T1:n ∼ Loc(ψ, q∗n(ψ))

and D1:n ∼ Loc(ψ, p∗n(ψ)). Then
√
n(θ̂ − ATE)⇒ N (0, V ∗)

V ∗ = Var(c(ψ)) + min
0<q,p≤1

E[C(ψ)q(ψ)]=B̄

E

[
1

q(ψ)

(
σ2

1(ψ)

p(ψ)
+

σ2
0(ψ)

1− p(ψ)

)]

The design in Theorem 4.3 minimizes the asymptotic variance over all sampling
and assignment propensities, subject to the budget constraint. If we set q = 1, then
V ∗ = min0≤p≤1 VH(p), minimizing the Hahn (1998) semiparametric efficiency bound for
the ATE over all propensities scores. As noted above, Armstrong (2022) shows that this
bound also applies to the designs in this paper for the case q = 1.

Remark 4.4 (General Costs). For the specification in Equation 4.2, the restriction to
costs C(ψ; p) = C(ψ) is without loss of efficiency if the marginal costs of assigning
treatment and control are similar C1 ≈ C0, or if sampling costs are much larger than
the cost difference between treatment arms Cs � |C1−C0|. We leave joint optimization
of q(ψ), p(ψ) with general costs C(ψ; p) to future work. However, for optimization of
the sampling propensity q(ψ) alone with fixed propensity p(ψ), e.g. p = 1/2, we can
accommodate general costs C(ψ; p). We simply use the design T1:n ∼ Loc(ψ, q∗n(ψ; p)),
discretizing the optimal sampling propensity from Equation 4.5.

4.3 Finite Sample Optimality

In this final subsection, we briefly discuss exact optimality in finite samples. Consider
the case q = 1 and p(X) = a/k fixed and constant. In this setting, Bai (2022) shows
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that if the balance function b(x) were known, then matching units into strata of size k
according to their sorted b(Xi) values minimizes MSE(θ̂|X1:n) over all stratified designs.
By contrast, here we show that if b(x) were known, the class of stratified designs itself
would generally be suboptimal. To see this, consider the case p = 1/2. Define the
complete graph Kn with vertices {1, . . . , n} and edge weights wij = b(Xi)b(Xj). The
Max-Cut optimization problem asks for a partition of the vertices into disjoint sets
E1∪E0 = {1, . . . , n} such that the weight of cut edges between E1 and E0 is maximized

max
E0,E1

∑
i,j

b(Xi)b(Xj)1(i ∈ E1, j ∈ E0) s.t. E0 t E1 = {1, . . . , n} (4.8)

For example, see Rendl et al. (2008) for an overview. Let E∗0 , E∗1 solve the Max-Cut
problem in Equation 4.8. Define the optimal treatment allocation d∗1:n = d∗1:n(X1:n)

by d∗i = 1(i ∈ E∗1) for 1 ≤ i ≤ n. Define the alternating design P ∗(D1:n|X1:n) that
alternates between d∗1:n and its mirror image 1− d∗1:n by

P ∗(D1:n = d∗1:n|X1:n) = P ∗(D1:n = 1− d∗1:n|X1:n) = 1/2

with D1:n ⊥⊥ W1:n|X1:n for the full data W1:n = (Xi, Yi(1), Yi(0))ni=1. Our next theorem
shows that the the alternating design P ∗ is globally optimal over the set of all covariate-
adaptive designs with fixed treatment probability P (Di = 1) = 1/2. We denote this set
of designs by P1/2 = {P : P (Di = 1) = 1/2, D1:n ⊥⊥ W1:n|X1:n}. For simplicity, suppose
n = 2m for an integer m.

Theorem 4.5 (Optimal Design). The design P ∗ has MSEP ∗(θ̂|X1:n) ≤ MSEP (θ̂|X1:n)

for all P ∈ P1/2.

The inequality is strict if Problem 4.8 has a unique solution up to permutation of
set labels. In particular, note that P ∗ is not a matched pairs design. Nevertheless, b(x)

is not known, so neither the globally optimal design, nor the optimal stratified design
from Bai (2022) are feasible. We also caution against plug-in approaches that use a
pilot estimate of b(Xi). Section 5.2 below shows that such approaches are equivalent to
regression adjustment with regressions estimated in the pilot instead of the main sample,
which may perform poorly if the pilot is small. For these reasons, we do not further
pursue finite sample optimal designs in this paper.
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5 Design with a Pilot Experiment

In this section, we study a procedure that uses pilot data to estimate and implement the
solution to the optimal stratification problem derived in the previous section. We show
that this feasible version of the optimal design is asymptotically efficient, achieving the
budget-constrained optimal variance of Theorem 4.3. In particular, for the case q = 1

our procedure minimizes the semiparametric variance bound over all propensity scores,
providing the first asymptotically efficient solution to the question of design using a
pilot study (Hahn et al. (2011)). The methods in this section are also relevant when
observational data from the target population or a closely related previous experiment
are available. Small pilot considerations and potential robustifications are discussed in
Remark 5.3 below. Pilot estimation of the optimal stratification variables ψ∗ is discussed
in Section 5.2 below.

5.1 Feasible Optimal Stratification

Fix stratification variables ψ1 = ψ2 = ψ and consider estimating the optimal design
for the budget-constrained problem in Equation 4.4. This amounts to using pilot or
proxy data to estimate the efficient sampling proportions q∗(ψ) and treatment propensity
p∗(ψ). As a proof of concept, we first state our result under large pilot asymptotics,
allowing consistent estimation of the heteroskedasticity functions σd(ψ). We show that
the feasible estimated optimal design is asymptotically efficient in the sense of Theorem
4.3. Fixed pilot asymptotics and small sample considerations are discussed in Remark
5.3 below.

In Section 4 we derived the optimal propensities

q∗(ψ) = B̄
(σ1(ψ) + σ0(ψ))C(ψ)−1/2

E[(σ1(ψ) + σ0(ψ))C(ψ)1/2]
p∗(ψ) =

σ1(ψ)

σ1(ψ) + σ0(ψ)
.

The sampling propensity q∗(ψ) is optimal provided the feasibility condition supψ q
∗(ψ) ≤

1 is satisfied. Consider pilot heteroskedasticity estimates12 σ̂2
d(ψ) for d = 0, 1. Define

12In practice, we use a modification of Fan and Yao (1998) to estimate variance functions. See
appendix section 9.4 for details.

27



the propensity estimates13

q̂(ψ) = B̄
(σ̂1(ψ) + σ̂0(ψ))C(ψ)−1/2

En[(σ̂1(ψi) + σ̂0(ψi))C(ψi)1/2]
p̂(ψ) =

σ̂1(ψ)

σ̂1(ψ) + σ̂0(ψ)
.

In practice, we may find q̂(ψj) > 1 for some j. This could be because the condition
supψ q

∗(ψ) ≤ 1 is violated and the optimal sampling problem does not have an interior
solution, or just due to statistical error. However, we can transform q̂(ψ) into an admis-
sible sampling propensity by an iterative rounding procedure, described in Remark 5.5
below. Suppose we have done so and let q̂n(ψ) and p̂n(ψ) be a sequence of discretizations
of q̂(ψ) and p̂(ψ), satisfying the conditions in Definition 4.2. We require the following
technical conditions, including consistency of the pilot heteroskedasticity estimates.

Assumption 5.1. Require pilot estimation rate |σ2
d − σ̂2

d|2,ψ = Op(n
−r) for some r > 0.

Require the variance regularity condition infψ σd(ψ) > 0 and (σ1/σ0)(ψ) ∈ [cl, cu] with
0 < cl < cu < ∞. Assume the interior solution condition supψ q

∗(ψ) ≤ 1. Require
discretization rate kn|Ln| = o(n1−(dim(ψ)+1)/α1) and kn = ω(n1/α2). Assume the moments
E[Y (d)4] < ∞, E|ψ(X)|α1

2 < ∞ for α1 > dim(ψ) + 1, and E[|md(ψ)|α2 ] < ∞ for
α2 ≥ 1/r. Assume costs 0 < C(ψ) <∞ for all ψ.

Our main result shows that finely stratified implementation of the optimal propen-
sity estimates is asymptotically fully efficient.

Theorem 5.2 (Pilot Design). Impose Assumption 5.1. Suppose T1:n ∼ Loc(ψ, q̂n(ψ))

and D1:n ∼ Loc(ψ, p̂n(ψ)). Then
√
n(θ̂ − ATE)⇒ N (0, V ∗)

V ∗ = Var(c(ψ)) + min
0<q,p≤1

E[C(ψ)q(ψ)]=B̄

E

[
1

q(ψ)

(
σ2

1(ψ)

p(ψ)
+

σ2
0(ψ)

1− p(ψ)

)]

For intuition, it is also helpful to consider certain special cases of Theorem 5.2. If
we fix q = 1, the design D1:n ∼ Loc(ψ, p̂n(ψ)) asymptotically minimizes the Hahn (1998)
variance bound over all propensity scores

V ∗ = min
0≤p≤1

VH(p) = Var(c(ψ)) + min
0≤p≤1

E

[
σ2

1(ψ)

p(ψ)
+

σ2
0(ψ)

1− p(ψ)

]
. (5.1)

If p̂∗ is a consistent pilot estimate of the optimal constant propensity p∗ in Equation
13Note in q̂(ψ) the average is taken over the main experiment covariates, allowing for covariate shift

between pilot and main experiment.
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4.6, then the design D1:n ∼ Loc(ψ, p̂n) has
√
n(θ̂ − ATE)⇒ N (0, V ) with

V ∗ = Var(c(ψ)) + min
p∈(0,1)

E

[
σ2

1(ψ)

p
+
σ2

0(ψ)

1− p

]
Remark 5.3 (Small Pilots). For small pilots, the asymptotic results in Theorem 5.2
requiring consistent estimation of the variance function σ2

d(ψ) may not reflect finite
sample performance. In practice, we may instead consider an inconsistent variance ap-
proximation using the squared residuals from a linear regression. Let ε̂id be residuals
from regressions Y (d) ∼ 1 +ψ in {Di = d}. For pilot data W1:m compute residual stan-
dard deviation estimate ŝd = Em[(ε̂i

d)2]1/2 and form the estimated optimal propensity
p̂∗ = ŝ1/(ŝ1 + ŝ0), rounding it to a close rational number p̂ = a/k. By Equation 3.5, if
D1:n ∼ Loc(ψ, p̂ ) then conditioning on the pilot data

√
n(θ̂ − ATE)|W1:m ⇒ N (0, V )

V = Var(c(ψ)) + E

[
σ2

1(ψ)

p̂
+
σ2

0(ψ)

1− p̂

∣∣∣∣W1:m

]
The rounding of p̂∗ to p̂ = a/k adds robustness. For example, if p∗ = 1/2 and our pilot
estimate p̂∗ = .57, we would round to p̂ = 1/2 except in very large experiments. See
the discussion of discretization in Remark 5.4 below. In practice, this procedure could
be further robustified by constructing a confidence interval for p∗ and checking that it
excludes a baseline choice such as p = 1/2, though we leave this to further work.

Remark 5.4 (Discretization). Consider a pilot estimate p̂(ψ) = .637. This could be
rounded to any of p̂ = 2/3, 3/5, 13/20, 63/100 and so on. If ψ is bounded, Assumption
5.1 requires that kn = o(

√
n) for the rounding scheme a/kn. This condition gives some

quantitative guidance about discretization fineness. For example, if n = 400 we might
rule out p̂ = 13/20. In our simulations and empirical application, it’s often possible to
choose a reasonable number of discretization levels just by inspecting the histogram of
the estimated p̂(ψ) and q̂(ψ) to see how much heterogeneity is needed.

Remark 5.5 (Feasible Sampling). In practice, we may find that q̂(ψj) > 1 for some j,
violating the sampling constraint. To restore feasibility, we can iteratively set q̂(ψj) = 1

for such j and recompute the optimal propensity for the remaining units. To that end,
define an index set J = ∅ and implement the following iterative rounding procedure. (1)
Find the largest q̂(ψj) > 1. Set q̂(ψj) = 1 and add j to J . (2) Recompute the sampling
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propensity according to

q̂(ψi) =
B̄ − (1/n)

∑
i∈J C(ψi)

1− |J |/n
(σ̂1(ψi) + σ̂0(ψi))C(ψi)

−1/2

En[(σ̂1(ψl) + σ̂0(ψl))C(ψl)1/2|l 6∈ J ]
∀i 6∈ J.

If maxni=1 q̂(ψi) ≤ 1, stop. Otherwise, return to (1). This procedure satisfies the in-
sample budget constraint En[q̂(ψi)C(ψi)] = B̄ after each iteration and terminates with
maxni=1 q̂(ψi) ≤ 1.

Remark 5.6 (Optimal Stratification Trees). Tabord-Meehan (2022) suggests using pilot
data to estimate a stratification Ŝ and assignment propensity p̂(Ŝ) over a set of tree
partitions Ŝ ∈ T of the covariate space. If Ŝ = Ŝ(ψ) then in our notation their Theorem
3.1 implies that

√
n(θ̂ − ATE)⇒ N (0, V )

V = Var(c(ψ)) + min
S∈T

(
E[Var(b(ψ; p∗(S))|S)] + E

[
σ2

1(ψ)

p∗(S)
+

σ2
0(ψ)

1− p∗(S)

])
.

The optimal propensity p∗(S) = σ1(S)/(σ1(S) + σ0(S)) with σ2
d(S) = Var(Y (d)|S).

The display shows that the optimal stratification tree chooses a compromise between
two different forces. In the first term, it tries to minimize the variance due to covari-
ate imbalance by choosing strata S that predict propensity-weighted outcomes well,
minimizing E[Var(b(ψ; p∗(S))|S)]. In the second term, it tries to minimize the resid-
ual variance by choosing strata S such that p∗(S) is close to the optimal propensity
p∗(ψ) = σ1(ψ)/(σ1(ψ) + σ0(ψ)). By contrast, we implement a discretized consistent
estimate p̂n(ψ) of the optimal propensity p∗(ψ) using fine stratification. This makes the
middle term above asymptotically lower order and globally minimizes the residual term,
without any first-order tradeoff (Equation 5.1). Of course, if S = S(X) uses different
covariates than our stratification variables ψ, then the efficiencies cannot be ranked.

5.2 Estimating Stratification Variables

Section 3 showed that the stratification variables ψ∗1 = c(X) and ψ∗2 = (c, b)(X) were
asymptotically efficient for both sampling and assignment. This suggests setting ψ1(X) =

ĉ(X) and ψ2(X) = (ĉ(X), b̂(X)), using pilot estimates of the various regression func-
tions. In our notation, the design D1:n ∼ Loc(̂b, p) was proposed in Bai (2022) for the
case with iid sampling.

Regression vs. Matching on Estimated Functions. Our first result is nega-
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tive, suggesting that for small pilots such an approach would be dominated by not using
the pilot data at all at the design stage, drawing treatments iid and doing regression
adjustment in the main sample. For simplicity, set q = 1 and let D1:n ∼ Loc(̂b, p) be
the design with pilot-estimated stratification variables. Let θ̂ be the difference of means
estimator formed using the data W1:n = (Di, Xi, Yi(Di))

n
i=1. Separately, define iid treat-

ments Ďi ∼ Bernoulli(p) and let θ̂adj be the cross-fit AIPW estimator in Proposition
3.12, estimated using the alternate data W̌1:n = (Ďi, Xi, Yi(Ďi))

n
i=1 with regression esti-

mators m̌d(ψ). Define b̌(X) by plugging in m̌d(ψ) to the formula in Equation 3.1. Then
with cp = (p− p2)1/2 the estimators θ̂ and θ̂adj have identical expansions

θ̂ = En[c(Xi)] + En[(Di − p)(b− b̂)(Xi)]/cp +Rn +Op(n
−1)

θ̂adj = En[c(Xi)] + En[(Ďi − p)(b− b̌)(Xi)]/cp + Řn.

The residual terms
√
nRn,

√
nŘn ⇒ N (0, v) for v > 0 and are mean-independent

of the first term. Denote the imbalance terms Bn = En[(Di − p)(b − b̂)(Xi)] and B̌n =

En[(Ďi−p)(b− b̌)(Xi)]. These terms control estimator error due to covariate imbalances
between the treatment arms. With pilot regression error rpilotn = maxd ‖m̂d−md‖2,ψ and
main sample regression error rmainn = maxd ‖m̌d −md‖2,ψ, it’s easy to show that

√
nBn = Op(r

pilot
n ) and

√
nB̌n = Op(r

main
n ).

We expect pilot estimation error to be larger rpilotn � rmainn if the pilot is much smaller
than the main sample.

Robustified Approach. The discussion above showed that, for small pilots, the
design D1:n ∼ Loc(̂b, p) behaves like a noisy version of the AIPW estimator θ̂A, with
regression adjustments estimated using the pilot instead of the main experiment. How-
ever, the Bai (2022) approach could still dominate if e.g. b̂ is estimated consistently
from a large observational dataset or a larger previous experiment with closely related
covariates and potential outcomes. The large pilot asymptotics in Bai (2022) can be
extended to show that the two-stage sampling and assignment design T1:n ∼ Loc(ĉ, q)

and D1:n ∼ Loc((ĉ, b̂), p) achieves the optimal variance V1 in Equation 3.6. Another
natural idea is to robustify the Bai (2022) approach, setting T1:n ∼ Loc((ĉ, b̂, ψ′), q) and
D1:n ∼ Loc((ĉ, b̂, ψ′), p) for stratification variables ψ′ expected to be predictive of both
treatment effects and outcomes ex-ante. This can then be combined with the methods
in the previous section, setting ψ = (ĉ, b̂, ψ′) and proceeding exactly as in Section 5.1.
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The efficiency of such designs under fixed pilot asymptotics is described by Equation 3.5.
Conditionally asymptotically exact inference, conditional on the pilot data, is available
using the methods in Section 6.

Remark 5.7 (Imbalance Term vs. Residual Variance). We noted earlier that under
completely randomized sampling and assignment

√
nT (θ̂ − ATE)⇒ N (0, V ) with

V = Var(c(X)) + Var(b(X)) + E

[
σ2

1(X)

p
+
σ2

0(X)

1− p

]
.

The middle term Var(b(X)) is the variance due to covariate imbalance, and the third term
is the residual variance. We can think of Var(b(X)) as the “easier” term. We can make
this term asymptotically negligible by any one of the following: (1) fine stratification
on ψ(X) = X under very weak assumptions for dim(X) small (2) ex-post propensity
reweighting under a smoothness condition (3) ex-post regression adjustment under well-
specification (4) the Bai (2022) design with a large enough pilot, or any combination
of these methods. By contrast, after treatments have been assigned, neither regression
adjustment nor propensity reweighting can help us further minimize the semiparametric
variance bound

VH(p) = Var(c(X)) + E

[
σ2

1(X)

p(X)
+

σ2
0(X)

1− p(X)

]
In this sense, the residual variance in this expression is the “harder” quantity. To affect it,
we need to change the law of the data-generating process by changing the treatment and
sampling proportions at design-time, as we have implemented in the previous sections.

6 Inference Methods

This section provides new methods for asymptotically exact inference on the ATE under
two-stage locally randomized designs. To do so, we generalize pairs-of-pairs14 type meth-
ods to accommodate designs with both finely stratified sampling and assignment, as well
as varying propensities q(ψ), p(ψ). Our inference methods enable applied researchers to
report smaller confidence intervals that fully reflect the efficiency gains from all of our
proposed designs.

For each assignment group g ∈ Gn, define the centroid ψ̄g = |g|−1
∑

i∈g ψi. Let
ν : Gn → Gn be a bijective matching between groups satisfying ν(g) 6= g, ν2 = Id,

14Also known as the method of collapsed strata, as in Hansen et al. (1953). See Abadie and Imbens
(2008) and Bai et al. (2021) for recent analyses.
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and the homogeneity condition 1
n

∑
g∈Gn |ψ̄g − ψ̄ν(g)|22 = op(1). In practice, ν is obtained

by matching the group centroids ψ̄g into pairs using the algorithm in Section 2. Let
Gνn = {g∪ν(g) : g ∈ Gn} be the unions of paired groups formed by this matching. Define
a(g) =

∑
i∈gDi and k(g) = |g|. Define the propensity weights w1

i = (1 − piqi)/(piqi)2

and w0
i = (1−qi(1−pi))/(qi(1−pi))2. Finally, define the variance estimator components

v̂1 = n−1
∑
g∈Gνn

1

a(g)− 1

∑
i 6=j∈g

YiYjDiDj(w
1
iw

1
j )

1/2

v̂0 = n−1
∑
g∈Gνn

1

(k − a)(g)− 1

∑
i 6=j∈g

YiYj(1−Di)(1−Dj)(w
0
iw

0
j )

1/2

v̂10 = n−1
∑
g∈Gn

k

a(k − a)
(g)
∑
i,j∈g

YiYjDi(1−Dj)(qiqj)
−1/2

Our inference strategy begins with the sample variance of the double-IPW estima-
tor (Equation 3.4), which is consistent for the true asymptotic variance under an iid
design, but too large under stratified designs. We correct this sample variance using the
estimators above, which measure how well the stratification variables predict observed
outcomes in local regions of the covariate space. Define the variance estimator

V̂ = Varn

(
Ti(Di − p(ψi))Yi
q(ψi)(p− p2)(ψi)

)
− v̂1 − v̂0 − 2v̂10. (6.1)

Our main result shows that V̂ is consistent for the limiting variance of Theorem
3.11, enabling asymptotically exact inference.

Theorem 6.1 (Inference). Assume the conditions of Theorem 3.11. If sampling T1:n ∼
Loc(ψ, q(ψ)) and assignment D1:n ∼ Loc(ψ, p(ψ)), then V̂ = V + op(1).

By Theorem 6.1 and the CLT in Section 3, the confidence interval Ĉ = [θ̂ ±
V̂ 1/2c1−α/2/

√
n] with cα = Φ−1(α) is asymptotically exact in the sense that P (ATE ∈

Ĉ) = 1 − α + o(1). Importantly, note that the scaling is by number of eligible units n,
not the smaller experiment size nT =

∑
i Ti ≤ n.

7 Empirical Results

In this section, we quantify the performance of each of our designs on N = 9 real DGP’s
from experimental papers covering a range of fields in applied economics. Our theoret-
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ical results showed separate variance reductions from each of the following: (a) finely
stratified treatment assignment, (b) finely stratified sampling (c) the optimal propensi-
ties q∗(ψ) and p∗(ψ) (infeasible), and (d) consistent pilot estimates q̂(ψ) and p̂(ψ) of the
optimal propensities (feasible). To quantify the marginal efficiency gain from each of
our proposed methods in finite samples, we simulate unadjusted ATE estimation under
the following designs:

CR: Complete randomization T1:n ∼ CR(q∗k) and D1:n ∼ CR(p), with q∗k a dis-
cretization of the budget-exhausting sampling propensity q∗ = B̄/En[C(ψi)] and
fixed assignment propensity p.15

CR, Loc: As in CR but with stratified assignment D1:n ∼ Loc(ψ, p).

Loc: Stratified sampling and assignment T1:n ∼ Loc(ψ, q∗k) and D1:n ∼ Loc(ψ, p).

Hom: As in Loc but with sampling propensity q∗hom,k(ψ) a discretization of
q∗hom(ψ) = B̄ · C(ψ)−1/2/E[C(ψ)1/2], the optimal sampling propensity assuming
homoskedasticity. This is feasible but may be misspecified.

Pilot S/L: As in Loc, but with T1:n ∼ Loc(ψ, q̂k(ψ)) and D1:n ∼ Loc(ψ, p̂k),
where q̂k(ψ) and p̂k are pilot estimates of the optimal design as in Section 5. We
consider pilots of size (S) npilot = 100 or (L) npilot = 400.16

We evaluate each of these designs on data from experimental papers published in
the AER between May 2021 and November 2022. We exclude papers for which data
is unavailable or that do not fit into our framework for various reasons, e.g. having
multiple interventions on the same unit with a time series structure. The included papers
are Abebe et al. (2021), Baysan (2022), Casey et al. (2021), Dellavigna et al. (2022),
Domurat et al. (2021), Hussam et al. (2022), and Lowe (2021). We additionally include
data from Banerjee et al. (2021), a study with significant treatment effect heterogeneity
as recently analyzed by Chernozhukov et al. (2023), as well as data from the Oregon
health insurance experiment, reported in Finkelstein et al. (2012), for a total of N = 9.

For each paper, we impute missing potential outcomes for all units, defining the
imputation Ỹi(d) = Yi(d)1(Di = d) + Ŷi(d)1(Di 6= d). Following the empirical exer-
cise in Bai (2022), we use the matching-based imputation Ŷi(d) = Yj(i)(d) with j(i) =

15In particular, we let q∗k = a/k, using the minimal k such that q∗k · En[C(ψi)] ∈ [.95B̄, 1.05B̄].
16Variance functions σ2

d(ψ) are estimated using a modification of Fan and Yao (1998), see appendix
section 9.4 for details. The pilot data has p = 1/2, q = 1 and treatments assigned by matched pairs.
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argminj:Dj=d |ψi − ψj|2.
17 Let N0 denote the size of the original experiment. Using this

full panel of imputed potential outcomes, we do the following:

(1) Draw (Ỹi(0), Ỹi(1), ψi) for i = 1, . . . , n with replacement from (Ỹi(0), Ỹi(1), ψi)
N0
i=1.

(2) Randomize T1:n and D1:n according to one of the designs (a) CR (b) CR, Loc (c)
Loc (d) Hom and (e) Pilot S/L.

(3) Reveal outcomes Ỹi = TiDiỸi(1) + Ti(1 − Di)Ỹi(0), form the estimator θ̂ and
confidence interval Ĉ = [θ̂ ± V̂ 1/2c1−α/2/

√
n] for α = 0.05.

Since the ATE for the imputed DGP (Ỹi(0), Ỹi(1), ψi)
N
i=1 is known, we can compute

the standard deviation (SD),18 coverage probabilities, and percent reduction in confi-
dence interval length for each DGP and design. The goal of this exercise is to quantify
the marginal variance reduction from each of our methods on the type of DGP’s that
occur in applied economics research, isolating the separate efficiency gains from finely
stratified assignment, finely stratified sampling, as well as implementation of the optimal
propensities from Section 4.

Descriptions of each paper, including the treatment and outcome variables, our
choice of stratification variables ψ, level of aggregation, and other parameters are pro-
vided in Section A.1 in the appendix. Experiment sizes n are as in the original papers,
ranging from n = 91 for Casey et al. (2021) to n = 1903 for Finkelstein et al. (2012).
The one exception is Domurat et al. (2021) (N0 = 87394), for which we set n = 1000 for
Monte Carlo tractability. Baseline treatment proportions are set to p = 1/2, except for
Lowe (2021) with p = 2/3 and Finkelstein et al. (2012) with p = 1/3. We use the large
experiment version of our method with folds of size 200 (Section 2.1) and implement
sampling subordinate assignment (Remark 3.14).

Costs and Discretization - Our theory showed that efficiency can be improved by (1)
sourcing a large pool of units willing to participate in the experiment and (2) choosing a
representative experimental subsample from this pool. If the marginal cost of including a
unit is zero, step (2) is trivial, and we just take as many units as possible. The marginal
cost C(ψ) of including different units is not reported in the papers in our sample. To
understand the potential variance reduction from representative sampling with fixed q as
well as the varying optimal propensity q∗(ψ) in the types of DGP’s that occur in applied

17Model-based imputation of Yi(d) = md(ψi) + σ2
d(ψi)ε

d
i with E[εdi |ψi] = 0, Var(εdi |ψi) = 1, and

εdi ∼ N (0, 1) yields qualitatively similar results.
18All of our designs and estimators have E[θ̂ −ATE] = 0, so we do not report MSE.

35



Design, Paper A. Ban. Bay. C. De. Do. F. H. L.

SD

CR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CR, Loc 0.81 0.48 0.51 0.88 0.55 0.93 0.79 0.73 0.87

Loc 0.75 0.45 0.39 0.84 0.47 0.88 0.74 0.70 0.76
Hom. 0.72 0.46 0.44 0.79 0.58 0.86 0.85 0.68 0.90
Pilot S 0.72 0.45 0.55 0.81 0.57 1.01 0.75 0.71 0.75
Pilot L 0.70 0.42 0.52 0.81 0.52 0.87 0.65 0.68 0.71

%∆CI

CR 0 0 0 0 0 0 0 0 0
CR, Loc -11 -49 -41 -6 -36 -4 -14 -10 -11

Loc -12 -48 -38 -5 -33 -4 -14 -15 -11
Hom. -21 -44 -47 -6 -40 -8 -8 -16 -10
Pilot S -19 -47 -23 -5 -23 3 -18 -15 -21
Pilot L -21 -52 -31 -5 -30 -9 -27 -18 -24

Cover

CR 0.95 0.95 0.95 0.94 0.96 0.95 0.94 0.94 0.96
CR, Loc 0.96 0.96 0.99 0.96 0.98 0.96 0.96 0.98 0.96

Loc 0.98 0.97 1.00 0.96 1.00 0.97 0.97 0.97 0.98
Hom. 0.97 0.98 0.98 0.97 0.97 0.96 0.96 0.98 0.95
Pilot S 0.97 0.98 0.99 0.96 0.99 0.95 0.97 0.98 0.97
Pilot L 0.97 0.97 0.99 0.97 0.99 0.96 0.97 0.97 0.96

n 1451 903 550 91 446 1000 1903 116 770
dim(ψ) 8 6 3 3 3 4 6 4 3

Table 1: Empirical Results
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economics research, we specify non-zero costs C(ψ) = 1(|ψ|2 ≤ κ) + 51(|ψ|2 > κ) with
κ = Medianni=1|ψi|2 and B̄ = 1.5. This results in feasible constant sampling proportions
q ≈ 7/10. For example, if ψi were village location relative to an urban center, this
would correspond to higher cost of collecting data in rural villages which, anecdotally,
is a common feature of experiments in development economics. We discretize q∗hom(ψ)

and q∗(ψ) by choosing qk(·) to minimize discretization error En[(qk − q∗)2(ψi)] over the
set {q : q(ψ) ∈ a/10 : a = 1, . . . , 10} subject to a constraint on the number of distinct
propensity levels Ln = |Image(qk)|, with Ln ≤ 2 for n < 500, Ln ≤ 3 for 500 ≤ n < 1000

and Ln ≤ 4 for 1000 ≤ n ≤ 2000.

Results. Our main results are presented in Table 1, with papers listed by initials of
the first author. The largest change in standard deviation (SD) is in the contrast between
complete randomization CR and finely stratified assignment CR, Loc, with an average
of −27% across the papers in our sample. This improvement is particulary striking in
papers like Baysan (2022) and Banerjee et al. (2021) with highly predictive baseline
covariates. The average marginal change in SD attributable to finely stratified sampling
(from CR, Loc to Loc) is smaller at −6%. Recall that stratified sampling reduces
the variance component Var(c(ψ)) → qVar(c(ψ)), with q = 7/10 in our simulations.
Larger reductions may be expected for smaller q (more eligible units). Using the optimal
sampling proportions q∗hom(ψ), which assume homoskedasticity, reduces the variance for
some studies but increases it for others, resulting in +4% change on average. This is not
surprising considering that many of these studies have considerable heteroskedasticity.
The change in SD between Loc and Pilot S is +4% on average, while for the case with
a large pilot the change in SD from Loc to Pilot L is −5% on average. This shows that
with a large pilot, closely related previous experiment, or observational data from the
same population, the feasible estimates of the optimal designs in Section 4 can be used to
increase efficiency. However, our empirical results suggest this may not be appropriate
when only a small pilot study is available.

Next we discuss the performance of our inference methods (Section 6). Coverage
is close to nominal, but somewhat conservative in finite samples. This is due to two
different forces. First, match quality between groups g and ν(g) in the collapsed-strata
variance estimators v̂1 and v̂0 is worse than match quality within groups, which results
in v̂1 and v̂0 in Section 6 being conservative. This effect is most severe for designs
with highly predictive covariates. Second, match quality at the sampling stage T1:n ∼
Loc(ψ, q(ψ)) is generally better than match quality at the assignment stage, since more
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units are available during sampling. However, our variance estimators can only only use
the “thinned out” outcome data available for the units Ti = 1 included in the experiment,
which underestimates match quality during sampling. This effect will be most severe
for small sampling proportions q → 0 and in DGP’s with significant treatment effect
heterogeneity.

The change in confidence interval length %∆CI is slightly conservative but broadly
reflects the efficiency gains in the first panel. This shows that our inference methods are
able to take advantage of the reduction in variance from both finely stratified sampling
and assignment, as well as designs with varying sampling proportions.

8 Recommendations for Practice

Our empirical results show robust variance reductions from fine stratification at both
the sampling and assignment stages. When choosing stratification variables ψ, we rec-
ommend including baseline outcomes, if available, and a small set of other variables
suspected to be predictive of outcomes and treatment effect heterogeneity. In particu-
lar, if experimenters have pre-registered measuring treatment effect heterogeneity with
respect to a certain variable, then it is natural to include this variable in ψ. Fine strat-
ification methods increase the value of collecting baseline survey data, insofar as extra
investment in the baseline survey process allows us to measure variables expected to be
most predictive of outcomes and treatment effect heterogeneity. Our theory in Section
3 showed that the efficiency gains from stratified sampling are larger the more eligible
units we have, since this helps sample more representative experimental units. Because
of this, sourcing a large pool of candidate units for the experiment can improve precision,
even if the experimental budget constraints do not allow all of these units to ultimately
be included in the experiment.

The feasible sampling design q∗hom(ψ) (assuming homoskedasticity) had mixed effects
in the empirical application. Relative to the simpler Loc design with constant propensity
q, the q∗hom(ψ) design reduced variance for some DGP’s but increased it for others. Aside
from potential misspecification, there is a finite sample tradeoff between (R) better
optimization of the residual variance by using varying sampling propensity q(ψ) and (M)
worse sampling and assignment matches due to having many different q(ψ) strata. For
experiments with highly predictive covariates, effect (M) may dominate, so that a design
with constant q(ψ) = q may be preferable. However, if costs are very heterogeneous,
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then the residual variance effect (R) will dominate, and q∗hom(ψ) can produce significant
efficiency gains. The estimated optimal designs from Section 5 performed well in our
empirical application for npilot = 400, but were generally too noisy for npilot = 100. In
the absence of a very large pilot or related previous experiment, one alternative is to
use observational data to calibrate the ex-ante variance function σ̄2(ψ) appearing in the
optimal design q∗(ψ). This could improve on the design q∗hom(ψ), which unrealistically
assumes perfect homoskedasticity, without the added noise associated with estimating
the ex-ante variance σ̄2(ψ) from a small pilot.

Finally, the inference methods in Section 6 were slightly conservative in finite sam-
ples, but still allow researchers to report smaller confidence intervals that reflect the
efficiency gains from finely stratified sampling and assignment.
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9 Appendix

9.1 Finite Population Estimands

If the eligible units {1, . . . , n} comprise the entire population of interest, then we may be
interested in estimation and inference on the sample average treatment effect SATE =

En[Yi(1)−Yi(0)], or the average conditional treatment effect (ACTE) En[c(ψi)], studied
in Armstrong and Kolesár (2021). Note that both estimands are defined over the full
population of eligible units, not just the smaller set of experiment participants {i : Ti =

1}. For the SATE, suppose T1:n ∼ Loc(ψ, q) andD1:n ∼ Loc(ψ, p) and define the residual
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treatment effect variance σ2
τ (ψ) = Var(Y (1) − Y (0)|ψ). Under the same conditions as

Theorem 3.2, we have
√
nT (θ̂ − SATE)⇒ N (0, VSATE) with

VSATE = E

[
σ2

1(ψ)

p
+
σ2

0(ψ)

1− p
− qσ2

τ (ψ)

]
. (9.1)

The final variance component E[σ2
τ (ψ)] is not identified, as in the case of SATE esti-

mation under complete randomization. Setting ψ = 1 and q = 1 recovers the classical
results in that setting. Observe that VSATE decreases as the residual treatment effect
heterogeneity σ2

τ (ψ) increases. The negative sign reflects a competition between two
opposing forces. To see this, let Ȳi = Yi(1)/p + Yi(0)/(1 − p) and consider the error
decomposition

θ̂ − SATE = Covn(Ti, Yi(1)− Yi(0))/q + Covn(Di, Ȳi |Ti = 1).

The first term parameterizes the errors due to correlation between the sampling vari-
ables and treatment effects, and naturally increases with σ2

τ (ψ) = Var(Y (1) − Y (0)|ψ).
The second term is increasing in Cov(Y (1), Y (0)|ψ), or equivalently decreasing in σ2

τ (ψ),
and larger in mean square, resulting in a net negative dependence on σ2

τ (ψ). As q → 0,
the relative variance19 due to sampling increases, exactly cancelling the E[σ2

τ (ψ)] fac-
tor due to assignment in the limit. Conservative inference for the SATE under strat-
ified sampling and assignment can be based on either of the lower bounds σ2

τ (ψ) ≥
σ2

1(ψ) + σ2
0(ψ)− 2σ1(ψ)σ0(ψ) ≥ 0.

The average conditional treatment effect ACTE = En[c(ψ)] is more difficult to
motivate from a policy perspective. One potential application is a structural model of
the form Yit(1)− Yit(0) = c(ψi) + εit, with systematic component c(ψi) mediated solely
through observables ψ and transitory shock component εit.20 Intuitively, in this model
the ACTE acts like a “denoised” version of the SATE. If the εit are uncorrelated, the
ACTE estimated at time t is the best predictor of the SATE for a policy implemented
at time t+1. The proof of Theorem 3.2 shows that

√
nT (θ̂−En[c(ψi)])⇒ N (0, Vc) with

identified variance Vc = E[σ2
1(ψ)/p+ σ2

0(ψ)/(1− p)] ≥ VSATE.

19The normalization
√
nT (θ̂ − SATE) by experiment size nT =

∑
i Ti holds the number of sampled

units fixed.
20Inference on a more general denoised SATE parameter in a model with transitory shocks is studied

in Deeb and de Chaisemartin (2022).
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Figure 4: PCA Folds

9.2 Details of Matching Algorithm

Write n = lk+δ for some integer l and 0 ≤ δ < k. First, match a remainder group of size
δ and set it aside. Then suppose without loss that n = lk. Let J be the minimal positive
integer such that 2J ≥ k and let

∑J−1
j=0 aj2

j with aj ∈ {0, 1} be the binary representation
of 2J − k ≥ 0. Before the jth call of Derigs’ algorithm, add l singleton groups of fake
units g = {Fj} of type j to the dataset if and only if aj = 1. Let R(g) denote the real
units in a group R(g) ⊆ [n] and F (g) the fake units so that g = R(g) ∪ F (g). Before
the jth call to Derig’s algorithm, set d(g, g′) = +∞ if either of the following occur: (1)
F (g)∩ F (g′) 6= ∅ or (2) |F (g)∪ F (g′)| > 0 but |F (g)∪ F (g′)| 6=

∑j
i=0 ai. Otherwise, set

the distance d(g, g′) = |ψ̄R(g)− ψ̄R(g′)|22. Compute the optimal pairing at each step. After
J steps, remove all the fake units by setting g = R(g). The binary representation trick
is inspired by Karmakar (2022), who studies a related matching problem. However, the
algorithm in his paper does not seem to guarantee groups of the correct cardinality for
larger k.

Figure 4 shows PCA Folds for the “large experiment” version of our algorithm. We
use the data from Finkelstein et al. (2012), with K = 4 folds and n = 1903 samples.
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9.3 Remarks

Remark 9.1 (Increasing Stratification Condition). At a high level, the condition ψ1 ⊆
ψ2 allows us to ignore the complicated effect of first-stage sampling on the joint distri-
bution of sampled stratification variables (ψ1,i)i:Ti=1. To see the problem, observe that
if q = 1/k then Ti = Tj = 1 implies that i, j cannot have been matched together during
sampling, since otherwise only one of them would have T = 1. Then, for instance, we
expect these units to be some distance from each other, so that

P (|ψ1,i − ψ1,j| < ε) > P (|ψ1,i − ψ1,j| < ε |Ti = Tj = 1). (9.2)

If E[Yi(d)|ψ1,i] 6= 0, such changes to the joint distribution will show up in the conditional
variance Var(θ̂|ψ1:n, T1:n) in complicated ways that depend on the details of the matching
algorithm. However, we can use the fact that the assignment stratification “partials out”
Yi(d) so that, to first order, only the residuals ui = Yi−E[Yi(d)|ψ2,i] enter this conditional
variance. If ψ1 ⊆ ψ2 the residuals ui are less affected by selection on ψ1,i. For example,
under this condition we can show that E[uiuj|Ti = Tj = 1] = E[uiuj] = 0. We conjecture
the theorem may be true without this condition if the effects in Equation 9.2 are lower
order, but leave the detailed study of this issue for specific matching procedures to future
work.

9.4 Heteroskedasticity Function Estimation

The theory in Section 5 requires heteroskedasticity function estimates σ̂2
d(ψ). Our sim-

ulations and empirical application using a modification of Fan and Yao (1998). In
a setting without outcomes Y = m(X) + σ2(X)ε, they propose (1) use local lin-
ear regression to estimate m(X) and (2) use local linear regression to project esti-
mated residuals (Y − m̂(X))2 on X. In our setting, we let Ỹi(1) = YiDiTi/piqi and
(1) project Ỹi(1) ∼ ψi to estimate m1(ψi). Next, we (2) project weighted residuals
ε̃i(1)2 = (Yi − m̂(ψi))

2DiTi/piqi ∼ ψi to estimate σ̂2
1(ψi), and similarly for d = 0. We

tested linear ridge regression, RBF-kernel ridge regression, and random forests for each
regression step, with hyperparameters chosen by cross-validation in all cases. Kernel
ridge estimated σ2

d(ψ) the most precisely in dimensions dim(ψ) = 1, 2, while forests
were superior in higher dimensions. Our simulation and empirical results are presented
using random forest regression. Pilot data is drawn from a stratified experiment of the
specified size with p = 1/2.
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Online Appendix to “Optimal Stratification of Survey
Experiments”

Max Cytrynbaum

A.1 Empirical Application Details

This section provides descriptions of each paper and implementation details for our
empirical application in Section 7. In all cases, we normalize the stratification variables
so that Var(ψij) = 1 for j = 1, . . . , dim(ψ).

(1) Abebe et al. (2021) estimates the effect of an application incentive on the ability
of applicants for clerical employment in Ethiopia. We let Y be the authors’ index
of cognitive ability, D be the application incentive, and ψ(X) be gender, age, work
experience in years, self-reported gpa and previous wage, and indicators for being
born in Addis Ababa, speaking Amharic, and studying engineering.

(2) Banerjee et al. (2021) estimates the effect of various strategies to promote child-
vaccination on the number of children completing the full vaccination sequence. We
let Yi be the number of children receiving the measles shot over the full trial period
in village i and Di whether the village received the SMS reminder intervention.
We let ψ include village population, the proportion of individuals in the baseline
survey of that village who were in a “scheduled caste”, a “backward class”, who
received nursery education or less, the proportion of vaccine completions among
older children, and proportion who had a vaccine card.

(3) Baysan (2022) estimates the effect of political information campaigns about con-
centration of executive power in Turkey on voter polarization. Data is at the ballot
box level, while assignment to information campaigns is at the neighborhood level.
We let Yi be the vote share of “No” votes, averaged over ballot boxes in a neigh-
borhood, in the 2017 referendum. We let D be whether the village was exposed
to any information campaign, and ψ include the village-level average vote share
for the CHP in the 2015 election, a measure of turnout, and the number of ballots
collected.

(4) Casey et al. (2021) estimates the effect of increased information given to polit-
ical parties about voter preferences over candidates on whether the most voter-
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preferred candidate was selected to run by the party. We let D be assignment
to the treatment package at the party-constituency level, Y whether the most
preferred candidate was selected, and let ψ include competitiveness of the race,
candidate professional qualifications index, and candidate public service motiva-
tion index.

(5) Dellavigna et al. (2022) estimates the effect of employer gifts and other “social
preference” related interventions on worker productivity. We study the first exper-
iment in the paper and let D = 1 if the worker received either a positive gift or an
in-kind gift and D = 0 for no gift or a negative gift. We let Y be worker output in
the last working period. We let ψ be total productivity during the first 8 periods
of the trial (excluding the final gift period), gender, and age.

(6) Domurat et al. (2021) estimates the effect of informational interventions about
Covered California insurance policies on takeup of insurance. We let D = 0 for
the control group and D = 1 if assigned to any of the letter campaigns in arms 3,
4, or 5. Y is an indicator for insurance takeup. ψ includes a measure of household
income, mean age, household subsidy size, and an indicator for being Latino.

(7) Finkelstein et al. (2012) reports the effect of winning the 2008 Oregon Medicaid
lottery on various health and public service utilization outcomes. We use data
from wave one, restricting to single person households. We estimate an ITT effect
with Y the number of emergency department (ED) visits in the post-period and D
an indicator for winning the lottery. We let ψ include gender, age, any visits to the
ED in the pre-period, number of visits in the pre-period, total SNAP benefits in the
pre-period, and indicators for ever being on SNAP or having a chronic condition.

(8) Hussam et al. (2022) estimates the value of employment on measures of psychoso-
cial wellbeing. Treatment assignment is at the block level in the refugee camp,
with a sample of five individuals chosen in each block. We aggregate by taking
the mean of outcomes and covariates in each block. We let D = 0 if the block
was randomized to cash only and D = 1 if it was randomized to employment.
Y is the endline mental health index, and ψ includes the baseline mental health
index, average gender (in [0, 1]), proportion who had a family member killed, and
a measure of sociability.

(9) Lowe (2021) estimates the effect of collaborative and adversarial intergroup contact
on cross-caste friendships using randomization to different teams in a cricket league
in India. We let Y be number of other caste friends at endline, D be whether the
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person is assigned to a mixed caste team, and ψ include number of other caste
friends at baseline, age, and a measure of cricket ability.

A Proofs

A.1 Matching

Theorem A.1 (Matching). Consider triangular arrays (ψi,n)ni=1 ⊆ Rd and (pi,n)ni=1 ⊆ Q
with levels pi,n ∈ Ln = {al/kl} and kn = max{kl : al/kl ∈ Ln}. For any sequence of
subsets Sn ⊆ [n], there exists a sequence of partitions (Gn)n≥1 of Sn such that Gn = ∪l Gnl
and Gnl partitions Sn ∩ {i : pi,n = al/kl} with |g| = kl for all but one non-empty group
g ∈ Gnl. The partition Gn satisfies the homogeneity rate

n−1
∑
g∈Gn

1

|g|
∑
i,j∈g

|ψi,n − ψj,n|22 ≤ (1 ∨ n
max
i=1
|ψi,n|22) ·O((n/kn|Ln|)−2/(d+1)). (A.1)

Let G∗nl be the optimal partition of Sn ∩ {i : pi,n = al/kl}, solving the minimization

G∗nl = argmin
Gnl

[
n−1

∑
g∈Gnl

∑
i,j∈g

|ψi,n − ψj,n|22

]

subject to the group size constraint |g| = kl. Then G∗n = ∪l G∗nl satisfies the homogeneity
rate in Equation A.1.

Proof. First, note that for any partition Gn

1

n

∑
g∈Gn

1

|g|
∑
i,j∈g

|ψi,n − ψj,n|22 ≤ (1 ∨ n
max
i=1
|ψi,n|22) · 1

n

∑
g∈Gn

1

|g|
∑
i,j∈g

∣∣∣∣ ψi,n − ψj,n
1 ∨maxni=1 |ψi,n|2

∣∣∣∣2
2

Clearly, |ψi,n/(1∨maxni=1 |ψi,n|2)|2 ≤ 1 for all 1 ≤ i ≤ n. Then by recentering, it suffices
to show the claim for ψi,n ∈ [0, 1]d for all 1 ≤ i ≤ n as n → ∞. Consider blocks of the
form B = {

∑d
k=1 xkek : xk ∈ [sk/m, (sk + 1)/m]} for indices {sk}dk=1 ⊆ {0, . . . ,m − 1}.

Fix an ordering of these blocks (Bl)
md

l=1 such that Bl and Bl+1 are adjacent for all l.
Intuitively, this forms a “block path” through [0, 1]d, see Bai et al. (2021) for a picture.
Define l(i) = minm

d

l=1{l : ψi,n ∈ Bl}.
Algorithm - Fix pa ∈ Ln and form groups (ga,s)

n
s=1 of units ga,s ⊆ {i : pi,n = pa =

fa/ka} by induction as follows. (1) Form groups of size ka arbitrarily among {i : l(i) = 1,
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and pn(Xi, ξn) = pa, possibly using external randomness πn. This process results in at
most one partially completed group with |ga,s′ | < ka. While |ga,s′| < ka, do the following:
(2) increment l→ l+ 1 and (3) add an unmatched unit i with l(i) = l+ 1 to this group.
If |ga,s′ | = ka, stop. If |ga,s′| < ka and there are unmatched units in Bl+1, goto (3). If
|ga,s′ | < ka and there are no unmatched units in Bl+1, increment l and go to (1). Suppose
that ga,s′ is completed with a unit from Bl′ . Then repeat the process above starting with
the next group ga,s′+1 and the units in block Bl′ . Since there are n < ∞ units, this
process terminates. Repeat this for each a = 1, . . . , |Ln|. By construction, this creates
groups Gn = {ga,s : 1 ≤ a ≤ |Ln|, 1 ≤ s ≤ n} with the ordering property

l(i) ≤ l(j) ∀i ∈ ga,s, j ∈ ga,s′ s < s′ a = 1, . . . , |Ln| (A.2)

Fix an indexing of all within-group pairs (pa,s,t)
k2a−ka
t=1 ≡ {(i, j) : i 6= j; i, j ∈ ga,s},

and denote pa,s,t = (ia,s,t, ja,s,t). Define Ea,s,t = {l(ia,s,t) = l(ja,s,t)}, the event that a pair
is in the same element of the block partition. With this notation, we have

n−1
∑
g∈Gn

1

|g|
∑
i,j∈g

|ψi,n − ψj,n|22 = n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s

|ψi,n − ψj,n|22

≤ n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

|ψia,s,t,n − ψja,s,t,n|221(ga,s 6= ∅)

(1) Suppose Ea,s,t occurs. Then da,s,t ≡ |ψia,s,t,n − ψja,s,t,n|2 ≤ maxm
d

l=1 diam(Bl, | · |2) ≤√
d/m on this event. Then we may bound

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

d2
a,s,t1(Ea,s,t)1(ga,s 6= ∅) ≤

d

nm2

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

1(ga,s 6= ∅)

≤ d

nm2

|Ln|∑
a=1

n∑
s=1

ka1(ga,s 6= ∅) ≤
d

m2

The final inequality since the double sum exactly counts the number of units in the
sample (by group)

∑|Ln|
a=1

∑n
s=1 ka1(ga,s 6= ∅) = |Sn| ≤ n.

(2) Now consider the terms whereEa,s,t does not occur. Fix any such pair (ia,s,t, ja,s,t).
Without loss, suppose the block membership l(ia,s,t) < l(ja,s,t). For l(ia,s,t) ≤ l ≤ l(ja,s,t),
define a sequence zl as follows. zl(ia,s,t) = ψia,s,t,n, zl(ja,s,t) = ψja,s,t,n and zl ∈ Bl chosen
arbitrarily otherwise. Note that for x ∈ Bl and y ∈ Bl+1, by construction of the con-
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tiguous blocks |x − y|2 ≤ 2
√
d/m. Then by telescoping and triangle inequality, on the

event Ec
a,s,t

da,s,t = |ψia,s,t,n − ψja,s,t,n|2 ≤
l(ja,s,t)−1∑
l=l(ia,s,t)

|zl+1 − zl|2 ≤
2
√
d

m
· [l(ja,s,t)− l(ia,s,t)]

Note also that if x, y ∈ [0, 1]d then |x− y|22 = d(|x− y|2/
√
d)2 ≤

√
d|x− y|2, using c2 ≤ c

for 0 ≤ c ≤ 1. In particular, we have d2
a,s,t ≤

√
d · da,s,t.

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

d2
a,s,t1(Ec

a,s,t) ≤
√
dn−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

da,s,t1(Ec
a,s,t)

|Ln|∑
a=1

2d

mnka

k2a−ka∑
t=1

n∑
s=1

[l(ia,s,t)− l(ja,s,t)]1(Ec
a,s,t) ≤

|Ln|∑
a=1

2
√
d

mnka

k2a−ka∑
t=1

md

≤
|Ln|∑
a=1

2
√
dmd

mn
ka ≤ 2

√
d|Ln|knn−1md−1

The second inequality follows by the ordering property in equation A.2 above, since for
each t = 1, . . . , k2

a−ka, the intervals ([l(ia,s,t), l(ja,s,t)])
n
s=1 are non-overlapping, and there

are at most md blocks. Summarizing the above work, we have shown that

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s

|ψi,n − ψj,n|22 ≤ n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

k2a−ka∑
t=1

d2
a,s,t1(Ea,s,t) + d2

a,s,t1(Ec
a,s,t)

≤ d

m2
+

2
√
d|Ln|knmd−1

n

Setting m �
(
n/(|Ln|kn)

)1/(d+1) gives the rate

n−1

|Ln|∑
a=1

n∑
s=1

k−1
a

∑
i,j∈ga,s

|ψi,n − ψj,n|22 = O
((
n/(|Ln|kn)

)−2/(d+1)
)

This finishes the proof of the first statement. The second statement follows by optimality
of G∗nl and comparison with the groups just constructed.
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A.2 Balance

Lemma A.2 (Stochastic Balance). Let (Fn)n≥1 such that treatment groups Gn, (hn(Wi))
n
i=1 ∈

Fn for a sequence of functions (hn)n≥1 and Fn ⊥⊥ τ d. Let D1:n ∼ Loc(ψn, pn) and
T1:n ∈ {0, 1}n such that {i : Ti = 1} = tg∈Gng. The following hold

(1) E[En[Ti(Di − pn(Xi))hn(Wi)]|Fn] = 0

(2) Var(En[Ti(Di − pn(Xi)))hn(Wi)]|Fn) ≤ 2n−1En[Tihn(Wi)
2] ≤ 2n−1En[hn(Wi)

2]

(3) Suppose ∃ (Fn)n≥1 satisfying the conditions above. If supn≥1E[hn(W )2] <∞ then
En[Ti(Di − pn(Xi))hn(Wi)] = Op(n

−1/2). If (hn(W ))n≥1 is uniformly integrable
then En[Ti(Di − pn(Xi))hn(Wi)] = op(1).

(4) The variance Var(
√
nEn[Ti(Di − pn(Xi)))hn(Wi)]|Fn) is bounded above by

n−1
∑
g∈Gn

|g|−1
∑
i,j∈g

(hn(Wi)− hn(Wj))
2 + n−1kn|Ln| ·

n
max
i=1

hn(Wi)
2

Proof. First, by assumption {i : Ti = 1} =
⊔
g∈G g, so En[Ti(Di − pi,n)hn(Wi)] is

n−1
∑
g∈Gn

∑
i∈g

(Di − pi,n)hn(Wi) = n−1

|Ln|∑
a=1

n∑
s=1

n∑
i=1

(Di − pa)hn(Wi)1(i ∈ ga,s)

By Lemma C.10 and our measurability assumptions

E[(Di − pa)hn(Wi)1(i ∈ ga,s)|Fn] = hn(Wi)E[(Di − pa)1(i ∈ ga,s)|Fn] = 0

By linearity, this shows the claim. By Lemma C.10, Var(En[(Di − pi,n)hn(Wi)]|Fn) is

n−2

|Ln|∑
a,a′

n∑
s,s′=1

n∑
i,j

Cov((Di − pa)hn(Wi)1(i ∈ ga,s), (Dj − pa′)hn(Wj)1(j ∈ ga′,s′)|Fn)

= n−2

|Ln|∑
a,a′

n∑
s,s′=1

n∑
i,j

hn(Wi)hn(Wj)1(i ∈ ga,s)1(j ∈ ga′,s′) Cov(Di, Dj|Fn)

= n−2

|Ln|∑
a=1

n∑
s=1

n∑
i,j

hn(Wi)hn(Wj)1(i, j ∈ ga,s) Cov(Di, Dj|Fn)

The final equality follows from Lemma C.10. By triangle inequality and the covariance
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bound in Lemma C.10, this is bounded above by

n−2

|Ln|∑
a=1

n∑
s=1

[
n∑
i=1

hn(Wi)
21(i ∈ ga,s) +

n∑
i 6=j

|hn(Wi)||hn(Wj)|1(i, j ∈ ga,s)k−1
a 1(s 6= n)

]

≤ n−1En[Tihn(Wi)
2] +

|Ln|∑
a=1

k−1
a

n∑
s=1

n∑
i 6=j

|hn(Wi)||hn(Wj)|1(i, j ∈ ga,s)

≤ n−1En[Tihn(Wi)
2] + n−2

|Ln|∑
a=1

k−1
a

n∑
s=1

(
n∑
i=1

|hn(Wi)|1(i ∈ ga,s)

)2

Continuing the calculation, by Jensen’s inequality the second term is equal to

n−2

|Ln|∑
a=1

ka

n∑
s=1

k−1
a

∑
i∈ga,s

|hn(Wi)|

2

≤ n−2

|Ln|∑
a=1

n∑
s=1

kak
−1
a

∑
i∈ga,s

|hn(Wi)|2 = n−1En[Tihn(Wi)
2]

This completes the proof of (2). Claim (3) follows by applying (1), (2) with (Fn)n≥1 any
sequence satisfying the conditions, followed by Markov inequality (Lemma C.2). For the
final part of (3), let cn →∞ with cn = o(

√
n) and define h̄in = hn(Wi)1(|hn(Wi)| ≤ cn).

Consider the expansion En[Ti(Di− pi,n)hn(Wi)] = En[Ti(Di− pi,n)(hn(Wi)− h̄n(Wi))] +

En[Ti(Di − pi,n)h̄n(Wi)] ≡ An + Bn. We may write |An| ≤ En[|hn(Wi) − h̄n(Wi)|] =

En[|hn(Wi)|1(|hn(Wi)| > cn)]. Then we have E[|An|] ≤ E[|hn(Wi)|1(|hn(Wi)| > cn)]→
0 as n → ∞ by uniform integrability. Then An = op(1) by Markov inequality. By the
first part of (3), Var(Bn|Fn) ≤ 2n−1En[h̄n(Wi)

2] ≤ 2n−1c2
n = o(1). Then Bn = op(1) by

conditional Chebyshev.

For the final identity (5), note that from Lemma C.10 for s 6= n and pa = qa/ka

∑
i,j∈ga,s

hn(Wi)hn(Wj) Cov(Di, Dj|Fn) =
qa(ka − qa)

k2
a

∑
i∈ga,s

hn(Wi)
2

+
qa(ka − qa)
k2
a(ka − 1)

∑
i,j∈ga,s

(−2)hn(Wi)hn(Wj)
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Note that −2ab = (a− b)2 − a2 − b2. Then the second sum is∑
i,j∈ga,s

(−2)hn(Wi)hn(Wj) =
∑

i,j∈ga,s

[(hn(Wi)− hn(Wj))
2 − hn(Wi)

2 − hn(Wj)
2]

=
∑

i,j∈ga,s

(hn(Wi)− hn(Wj))
2 − (ka − 1)

∑
i∈ga,s

hn(Wi)
2

Substituting in the first display above, the diagonal terms cancel. For the claimed
constant, note that maxp∈(0,1) p(1 − p) ≤ 1/4 and maxk≥2

k
k−1
≤ 2, so qa(ka−qa)

k2a(ka−1)
≤ k−1

a .
Aggregating over (a, s) gives

n−1

|Ln|∑
a=1

n−1∑
s=1

n∑
i,j∈ga,s

(hn(Wi)− hn(Wj))
2 +

n∑
i=1

hn(Wi)
21(i ∈ ga,n)


The second term is

n−1

|Ln|∑
a=1

n∑
i=1

hn(Wi)
21(i ∈ ga,n) ≤ n−1 n

max
i=1

hn(Wi)
2

|Ln|∑
a=1

n∑
i=1

1(i ∈ ga,n)

≤ n−1kn|Ln| ·
n

max
i=1

hn(Wi)
2

This finishes the proof.

Lemma A.3 (Balancing). Suppose T1:n ∼ Loc(ψ1, q(x)) and D1:n ∼ Loc(ψ2, p(x)) with
(ψ1(X), q(X)) ∈ σ(ψ2(X)), and ψ1, ψ2, q, and p possibly dependent on ξ ⊥⊥ W1:n. Sup-
pose E[|ψ1(X)|α1 ] < ∞ for α1 > d(ψ2) + 1 and E[|ψ2(X)|α1 ] < ∞ for α2 > d(ψ2) + 1.
If E[f(ψ2(X), p(X), ξ)2|ξ] <∞ ξ-a.s. then

En[Ti(Di − p(Xi))f(ψ2(Xi), p(Xi), ξ)] = op(n
−1/2)

If E[g(ψ1(X), q(X), ξ)2|ξ] <∞ ξ-a.s. then En[(Ti−q(Xi))g(ψ1(Xi), q(Xi), ξ)] = op(n
−1/2).

Suppose further that kn|Ln| = o(n1−(d+1)/(α1∧α2)). Then En[Ti(Di−pn(Xi))f(ψ2(Xi), ξ)] =

op(n
−1/2) and En[(Ti − qn(Xi))g(ψ1(Xi), ξ)] = op(n

−1/2) under the same conditions.

Proof. We begin with the first claim. Fix a sequence cn with cn → ∞ and c2
n =

o((kn|Ln|)−2/(d+1)n2/(d+1)−2/α2). Work on the assumed almost sure event and fix ξ. De-
note Z = (ψ2(X), p(X)). Define L2(Z) = {g(Z) : E[g(Z)2|ξ] < ∞}. By assumption,
f(Z, ξ) ∈ L2(Z). Our strategy is to approximate f(Z, ξ) by Lipschitz functions. Define
the spaces Ln = {g(Z) ∈ L2(Z) : |g|lip ∨ |g|∞ ≤ cn} and let gn ∈ Ln be such that
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E[(gn(Z) − f(Z))2] ≤ 2 infg∈Ln E[(g(Z) − f(Z))2]. We claim that |gn − f |22,Z → 0. Let
ε > 0 and note that by Lemma C.5 there exists a function |h|lip ∨ |h|∞ < ∞ with
|h− f |22,Z < ε. Since cn →∞, there exists N such that cn ≥ |h|lip ∨ |h|∞ for all n ≥ N .
Then for n ≥ N we have |gn−f |22,Z ≤ 2 infg∈Ln |g−f |22,Z ≤ 2|h−f |22,Z < 2ε since h ∈ Ln.
Since ε was arbitrary, this shows the claim. Summarizing our work so far, we found
gn(Z, ξ) such that E[(f(Z, ξ)− gn(Z, ξ))2|ξ] = o(1), |gn(Z, ξ)− gn(Z ′, ξ)| ≤ cn|Z − Z ′|2,
and |gn(·, ξ)|∞ ≤ cn ξ-a.s. Now we expand

En[Ti(Di − pi)f(Zi, ξ)] = En[Ti(Di − pi)(f(Zi, ξ)− gn(Zi, ξ))] + En[Ti(Di − pi)gn(Zi, ξ)]

Denote these terms An, Bn. Let Fn = σ((ψ2)1:n, (pi)1:n, πn, τ
t, ξ). Since (ψ1, q) ∈ σ(ψ2),

we have Gn, f(Zi)1:n, gn(Zi)1:n ∈ Fn. Then by Lemma A.2 E[An|Fn] = 0 and

Var(
√
nEn[Ti(Di − pi)(f(Zi, ξ)− gn(Zi, ξ))]|Fn) ≤ 2En[(f(Zi, ξ)− gn(Zi, ξ))

2] = op(1)

The equality by conditional Markov (Lemma C.2) since E[En[(f(Zi, ξ)−gn(Zi, ξ))
2]|ξ] =

|f − gn|22,Z = o(1) ξ-a.s. as shown above. Then An = op(n
−1/2), again by conditional

Markov. Next consider Bn. By Lemma A.2, we have E[Bn|Fn] = 0. Using the claim
and Lemma A.2, we calculate

Var(
√
nBn|Fn) ≤ n−1

∑
g

1

|g|
∑
i,j∈g

(gn(Zi, ξ)− gn(Zj, ξ))
2 + n−1kn|Ln|

n
max
i=1

gn(Zi, ξ)
2

≤ c2
nn
−1
∑
g

1

|g|
∑
i,j∈g

|Zi − Zj|22 + n−1kn|Ln|c2
n

= c2
nn
−1
∑
g

1

|g|
∑
i,j∈g

(|ψ2,i − ψ2,j|22 + |pi − pj|2) + n−1kn|Ln|c2
n

= c2
nop(n

2/α2(n/(kn|Ln|)−2/(d+1)) + n−1kn|Ln|c2
n = op(1)

The second to last equality since pi = pj for any i, j ∈ g, ∀g and by Theorem A.1,
using the fact that maxni=1 |ψ2,i|2 = op(n

2/α2) by Lemma C.8. The final equality follows
by our choice of cn. Then Bn = op(n

−1/2), again by conditional Markov. This finishes
the proof. The conclusion for sampling variables follows by the same proof, setting
Ti, qi → 1, Di → Ti and pi → qi and ψ2 → ψ1. The second set of claims follows by
setting Z = ψ2(X) and pi → pi,n in the above proof.

9



A.3 CLT

Assumption A.4. Consider the following assumptions

(A1) E[Y (d)2] <∞ and ψ1, ψ2, q, p as in Theorem 3.11 with qi, pi ∈ [δ, 1− δ] ⊆ (0, 1).

(A2) E[Y (d)4] < ∞ and propensities p̂i,n = p̂i,n(Xi, ξn), q̂i,n = q̂i,n(Xi, ξn), pi = p(Xi),
and qi = q(Xi) for ξn ⊥⊥ σ(W1:n, τ

t, τ d, πn). p̂i,n, pi ∈ [δ, 1 − δ] ⊆ (0, 1) and
q̂i,n, qi ≥ δ. Also En[(p̂i,n − pi)2] = op(1) and En[(q̂i,n − qi)2] = op(1).

Theorem A.5 (CLT). (1) Suppose Assumption A.4 (A1) holds. Let T1:n ∼ Loc(ψ1, q(x))

and D1:n ∼ Loc(ψ2, p(x)). Define c1,i = E[Yi(1) − Yi(0)|ψ1,i, qi, ξ]. Then
√
n(En[c1,i] −

ATE)|ξ ⇒ N (0, V1) with V1 = Var(c1,i|ξ). Define

ui = q−1
i (E[Yi(1)− Yi(0)|ψ1,i, qi, ξ]− E[Yi(1)− Yi(0)|ψ2,i, pi, ξ])

and F0,n = σ(ξ, πn, (ψ1,i)1:n, (qi)1:n, τ
t). Then

√
nEn[Tiui]|F0,n ⇒ N (0, V1) with asymp-

totic variance

V2 = E[q−1
i Var(E[Yi(1)− Yi(0)|ψ2,i, pi, ξ]|ψ1,i, qi, ξ)|ξ].

Define the residuals εdi = Yi(d)−E[Yi(d)|ψ2,i, pi, ξ] and Gn = σ(ξ, πn, τ
t, τ d, (ψ2,i)1:n, (pi)1:n, ).

Then
√
nEn[TiDiε

1
i /(piqi) + Ti(1−Di)ε

0
i /((1− pi)qi)]|G0,n ⇒ N (0, V3) with variance

V3 = E

[
Var(Yi(1)|ψ2,i, pi, ξ)

qipi
+

Var(Yi(0)|ψ2,i, pi, ξ)

qi(1− pi)

∣∣∣∣ξ] .
(2) Alternatively, suppose Assumption A.4 (A2) holds. Define the residuals εdi = Yi(d)−
E[Yi(d)|X]. Let ψk,n = ψk,n(X) for k = 1, 2. Let T1:n ∼ Loc(ψ1,n, q̂n(x)) and D1:n ∼
Loc(ψ2,n, p̂n(x)) and define G0,n = σ(πn, ξn, X1:n, τ

t, τ d). Then
√
nEn[TiDiε

1
i /(p̂i,nq̂i,n) +

Ti(1−Di)ε
0
i /((1− p̂i,n)q̂i,n)]|G0,n ⇒ N (0, V3) with variance

V3 = E

[
1

q(Xi)

(
σ2

1(Xi)

p(Xi)
+

σ2
0(Xi)

1− p(Xi)

)]
.

Proof. First consider (1). Define H0,n = σ(ξ) and Hk,n = σ(ξ, (c1,i)i=1:k) for k ≥ 1.
Claim that (Hk,n, c1,k−ATE)k≥1 is an MDS. Adaptation is clear. For the MDS property,
E[c1,i|Fi−1,n] = E[c1,i|ξ, (c1,k)k=1:i−1] = E[c1,i|ξ] = E[Yi(1) − Yi(0)|ξ] = ATE by tower
law and independence. Similarly, E[(c1,i − θ)2|Fi−1,n] = E[(c1,i − θ)2|ξ] = Var(c1,i|ξ).
To finish, we show the Lindeberg condition. Note that by conditional Jensen inequality
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V ar(c1,i|ξ) ≤ E[c2
1,i|ξ] ≤ E[(Y1 − Y0)2] < ∞. Then we have (c1,i − θ)21((c1,i − θ)2 >

nε)→ 0 ξ-a.s., so by dominated convergence as n→∞

En[E[(c1,i − θ)21((c1,i − θ)2 > nε2)|ξ]] = E[(c1,i − θ)21((c1,i − θ)2 > nε2)|ξ]→ 0

Then the Lindberg condition is satisfed, so by Theorem C.4
√
n(En[c1,i] − ATE)|ξ ⇒

N (0, V1) with the claimed limiting variance. Consider the second claim. Define Fk,n =

σ(F0,n, (ψ2,i)i=1:k, (pi)i=1:k) for k ≥ 1. Claim that (Tkuk,Fk,n)k≥1 is an MDS. Adaptation
is clear from the definitions. Next we show the MDS property. Note that T1:n ∈ F0,n

since T1:n = G(τ t, (ψ1,i)1:n, (qi)1:n, πn). Note the crucial fact that (A,B) ⊥⊥ C =⇒
A ⊥⊥ C |B. By randomization we have (uk+1, (ψ1,i)1:n, (qi)1:n, ξ, (ψ2,i)i=1:k, (pi)i=1:k) ⊥
⊥ (τ t, πn). Combining this with the crucial fact, gives conditional independence from
(πn, τ

t)

E[Tk+1uk+1|Fk,n] = Tk+1E[uk+1|τ t, (ψ1,i)1:n, (qi)1:n, πn, (ψ2,i)i=1:k, (pi)i=1:k, ξ]

= Tk+1E[uk+1|(ψ1,i)1:n, (qi)1:n, (ψ2,i)i=1:k, (pi)i=1:k, ξ]

Next, note that since (Xi)
n
i=1 are iid and ξ ⊥⊥ X1:n, we have f(Xk+1, ξ) ⊥⊥ g(X−(k+1), ξ)|ξ

for any functions f, g. Let g(X−(k+1), ξ) = ((ψ1,i)i 6=k+1, (qi)i 6=k+1, ξ, (ψ2,i)i=1:k, (pi)i=1:k)

and f(Xk+1, ξ) = uk+1, giving conditional independence

E[uk+1|(ψ1,i)1:n, (qi)1:n, (ψ2,i)i=1:k, (pi)i=1:k, ξ] = E[uk+1|ψ1,k+1, qk+1, ξ]

= q−1
k+1E[Yk+1(1)− Yk+1(0)|ψ1,k+1, qk+1, ξ]

− q−1
k+1E[E[Yk+1(1)− Yk+1(0)|ψ2,k+1, pk+1, ξ]|ξ, ψ1,k+1, qk+1] = 0

The final equality by tower law since σ(ξ, ψ1,k+1, qk+1) ⊆ σ(ψ2,k+1, pk+1, ξ) by the in-
creasing stratification assumption. This shows the MDS property. Next, we com-
pute the variance process Σk,n =

∑k
i=1E[(Tiui)

2|Fi−1,n]. By the exact argument above
E[Tiu

2
i |Fi−1,n] = TiE[u2

i |ψ1,i, qi, ξ], so that E[Tiu
2
i |Fi−1,n] = TiE[E[u2

i |Fi−1,n]|Fi−1,n] =

TiE[u2
i |ψ1,i, qi, ξ], since (ψ1,i, qi, ξ) ∈ F0,n ⊆ Fi−1,n. In particular, we have shown that

Σk,n ∈ F0,n for all k, n, satisfying the variance condition of Proposition C.4. We have

Σn = En[TiE[u2
i |ψ1,i, qi, ξ]] = En[(Ti − qi)E[u2

i |ψ1,i, qi, ξ]] + En[qiE[u2
i |ψ1,i, qi, ξ]]

Call these termsAn, Bn. By conditional Jensen and Young’s, we have E[|E[u2
i |ψ1,i, qi, ξ]|] ≤

E[u2
i ] . E[(Yi(1) − Yi(0))2] .

∑
d=0,1E[Yi(d)2] < ∞. Then An = op(1) by Lemma A.2.
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For the second term Bn, we have

E[Bn|ξ] = E[En[qiE[u2
i |ψ1,i, qi, ξ]]|ξ] = E[qiE[u2

i |ψ1,i, qi, ξ]|ξ]

= E[q−1
i Var(E[Yi(1)− Yi(0)|ψ2,i, pi, ξ]|ψ1,i, qi, ξ)|ξ]

Moreover, similar to the calculation for An, conditional Jensen and Young’s show that
E[|E[u2

i |ψ1,i, qi, ξ]|ξ] .
∑

d=0,1E[Yi(d)2] < ∞, so Bn − E[Bn|ξ] = op(1) by conditional
WLLN. Then we have shown Σn −E[Bn|ξ] = op(1), with the claimed limit. Finally, we
show the Lindberg condition in Equation C.1. Let ∆i = Yi(1)−Yi(0). By the propensity
lower bound and Young’s inequality T 2

i u
2
i ≤ 2δ−2(E[∆i|ψ1,i, qi, ξ]

2 +E[∆i|ψ2,i, pi, ξ]
2) ≡

vi. Note also that E[vi] . E[E[∆i|ψ1,i, qi, ξ]
2 +E[∆i|ψ2,i, pi, ξ]

2] ≤ 2E[∆2
i ] . E[Y (1)2 +

Y (0)2] <∞. The second inequality is conditional Jensen. Then for ε > 0

n−1

n∑
i=1

E[T 2
i u

2
i1(T 2

i u
2
i > nε2)|F0,n] ≤ n−1

n∑
i=1

E[vi1(vi > nε2)|F0,n] ≡ Cn

As in the conditional independence arguments above, we have

n−1

n∑
i=1

E[vi1(vi > nε2)|F0,n] = n−1

n∑
i=1

E[vi1(vi > nε2)|τ t, πn, (ψ1,i)1:n, (qi)1:n, ξ]

= n−1

n∑
i=1

E[vi1(vi > nε2)|(ψ1,i)1:n, (qi)1:n, ξ] = n−1

n∑
i=1

E[vi1(vi > nε2)|ψ1,i, qi, ξ]

Then E[Cn] = E[E[Cn|ξ]] = E[vi1(vi > nε2)] → 0 as n → ∞ since vi ≥ 0 and
E[vi] <∞. Then Cn

p→ 0 by Markov inequality. This finishes the proof of the Lindberg
condition. We skip the proof of the final claim, since it is similar to the proof of claim (2).

Next we show claim (2). Define Gk,n = σ(G0,n, (ε
0
i , ε

1
i )i=1:k). Then claim that

(zi,n,Gi,n)i≥1 is an MDS with zi,n = TiDiε
1
i /(p̂i,nq̂i,n)+Ti(1−Di)ε

0
i /((1− p̂i,n)q̂i,n). Adap-

tation is clear. Next we show the MDS property. It suffices to show E[εdi |Gi−1,n] = 0.
Again we use the fact (A,B) ⊥⊥ C =⇒ A ⊥⊥ C |B. Then note that E[εdi |Gi−1,n] is equal
to

E[εdi |πn, ξn, X1:n, τ
t, τ d, (ε0i , ε

1
i )i=1:i−1] = E[εdi |X1:n, (ε

0
i , ε

1
i )i=1:i−1] = E[εdi |Xi] = 0.

The second equality by the fact with A = εdi , B = (X1:n, (ε
0
i , ε

1
i )i=1:i−1), and C =
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(πn, ξn, τ
t, τ d). The third equality by settingA = εdi , B = Xi, and C = (X−i, (ε

0
i , ε

1
i )i=1:i−1)).

This proves the MDS property. Next we analyze Σk,n = n−1
∑k

i=1E[z2
i,n|Gi−1,n], the vari-

ance process. By the exact reasoning above, E[(εdi )
2|Gi−1,n] = E[(εdi )

2|Xi] = σ2
d(Xi).

Σk,n = n−1

k∑
i=1

TiDiσ
2
1(Xi)/(p̂i,nq̂i,n)2 + Ti(1−Di)σ

2
0(Xi)/((1− p̂i,n)q̂i,n)2

so that Σk,n ∈ G0,n for all k, n, satisfying the variance condition of Proposition C.4.

En[TiDiσ
2
1(Xi)/(p̂i,nq̂i,n)2] = En[((Ti − q̂i,n) + q̂i,n)Diσ

2
1(Xi)/(p̂i,nq̂i,n)2] = R1

n +R2
n

By our propensity lower bounds we haveDiσ
2
1(Xi)/(p̂i,nq̂i,n)2 ≤ δ−4σ2

1(Xi) with E[σ2
1(X)] <

∞, so Diσ
2
1(Xi)/(p̂i,nq̂i,n)2 is uniformly integrable. Then R1

n = op(1) by Lemma A.2.
Similarly, R2

n = En[((Di − p̂i,n) + p̂i,n)σ2
1(Xi)/p̂

2
i,nq̂i,n] = R3

n +R4
n and R3

n = op(1) by the
same argument. Then Σn = En[σ2

1(Xi)/p̂i,nq̂i,n] + op(1).

|En[σ2
1(Xi)/p̂i,nq̂i,n − σ2

1(Xi)/piqi]| ≤ δ−4|En[σ2
1(Xi)((qi − q̂i,n)pi + q̂i,n(pi − p̂i,n))]|

≤ En[σ2
1(Xi)

2]1/2
(
En[(qi − q̂i,n)2]1/2 + En[(pi − p̂i,n)2]1/2

)
= Op(1)op(1) = op(1)

Then En[TiDiσ
2
1(Xi)/(p̂i,nq̂i,n)2] = En[σ2

1(Xi)/piqi] + op(1) = E[σ2
1(Xi)/piqi] +Op(n

−1/2)

by Chebyshev inequality. By symmetry, the same holds for the D = 0 term. Putting
this together, we have shown that Σn

p→ E[σ2
1(Xi)/(piqi)+σ2

0(Xi)/(1−pi)qi] as claimed.
Finally, we show the Lindberg condition. Note the bound |zi,n|2 ≤ 2δ−4((ε1i )

2 + (ε0i )
2) ≡

vi, with E[vi] . Var(Y (1)) + Var(Y (0)) <∞. Then for ε > 0 we have

Ln = n−1

n∑
i=1

E[z2
i,n1(z2

i,n > nε2)|G0,n] ≤ n−1

n∑
i=1

E[vi1(vi > nε2)|F0,n]

= n−1

n∑
i=1

E[vi1(vi > nε2)|πn, ξn, X1:n, τ
t, τ d] = n−1

n∑
i=1

E[vi1(vi > nε2)|Xi]

The inequality from the upper bound just stated. The second equality from the condi-
tional independence reasoning above. Then E[Ln] = E[vi1(vi > nε2)] → 0 as n → ∞
since E[vi] <∞. Then by Markov inequality Ln

p→ 0, which finishes the proof.

Proof of Theorem 3.11. Define c1,i = E[Y (1) − Y (0)|ψ1,i, qi, ξ] and c2,i = E[Y (1) −
Y (0)|ψ2,i, pi, ξ]. Define b2,i = E[Y (1)|ψ2,i, pi, ξ]((1−pi)/pi)1/2 +E[Y (0)|ψ2,i, pi, ξ](pi/(1−
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pi))
1/2 and εdi = Yi(d)− E[Yi(d)|ψ2,i, pi, ξ]. Define the σ-algebras Fk,n for 1 ≤ k ≤ 4

F1,n = σ(ψ1,1:n, q1:n, ξ, πn) F2,n = σ(F1,n, T1:n) F3,n = σ(F2,n, ψ2,1:n, p1:n)

and F4,n = σ(F3,n, D1:n). We expand our estimator by projection

θ − θ̂ = (θ − E[θ̂|F1,n]) + (E[θ̂|F1,n]− E[θ̂|F2,n]) + (E[θ̂|F2,n]− E[θ̂|F3,n])

+ (E[θ̂|F3,n]− E[θ̂|F4,n]) + (E[θ̂|F4,n]− θ̂)

= En[c1,i − θ] + En

[
Ti − qi
qi

c1,i

]
+ En

[
Ti
qi

(c2,i − c1,i)

]
+ En

[
(Di − pi)Ti
qi
√
pi − p2

i

b2,i

]

+ En

[
DiTiε

1
i

piqi
+

(1−Di)Tiε
0
i

(1− pi)qi

]
≡ An +Bn + Cn + Sn +Rn

We wish to apply Lemma A.3 to show that
√
nBn,

√
nSn = op(1). It suffices to check

integrability. In the notation of the lemma, define g(ψ1,i, qi, ξ) = c1,i/qi, and note that
by our propensity bound, Young’s inequality, and contraction

E[E[c2
1,i/q

2
i |ξ]] ≤ δ−2E[c2

1,i] . E[
∑
d=0,1

E[Y (d)|ψ1,i, qi, ξ]
2] ≤

∑
d=0,1

E[Y (d)2]

This shows E[c2
1,i/q

2
i |ξ] <∞ ξ-a.s. Similarly, E[b2

2,iq
−2
i (pi(1− pi))−1|ξ] <∞ ξ-a.s. Then

√
nBn,

√
nSn = op(1) by the lemma.

The conditions of Theorem A.5 are satisfied by assumption. Then
√
nAn|ξ ⇒

N (0, V1) with V1 = Var(c1,i|ξ),
√
nCn|F2,n ⇒ N (0, V2) with V2 = E[q−1

i Var(c2,i|ψ1,i, qi, ξ)|ξ],
and

√
nRn|F4,n ⇒ N (0, V3) with V3 = E[q−1

i (σ2
1,ip
−1
i + σ2

0,i(1 − pi)
−1)|ξ] for σ2

d,i =

Var(Y (d)|ψ2,i, pi, ξ). Then by Slutsky and Lemma C.6, we have
√
n(θ̂ − ATE)|ξ ⇒

N (0, V1 + V2 + V3).

To finish the proof, we use algebra to reformulate the variance V = V1 +V2 +V3. By
the law of total variance Var(c(X)|ξ) = Var(E[c(X)|ψ1, q, ξ]|ξ)+E[Var(c(X)|ψ1, q, ξ)|ξ],
with E[c(Xi)|ψ1,i, qi, ξ] = c1,i. Then since ξ ⊥⊥ W1:n

V1 = Var(c(X))− E[Var(c(X)|ψ1, q, ξ)|ξ].

Next, by the law of total variance

Var(c(Xi)|ψ1,i, qi, ξ) = E[Var(c(X)|ψ2,i, pi, ξ)|ψ1,i, qi, ξ]+Var(E[c(X)|ψ2,i, pi, ξ]|ψ1,i, qi, ξ)
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Using this equality and applying tower law gives

V2 = E[q−1
i Var(c2,i|ψ1,i, qi, ξ)|ξ] = E[q−1

i Var(E[c(X)|ψ2,i, pi, ξ]|ψ1,i, qi, ξ)|ξ]

= E[q−1
i Var(c(Xi)|ψ1,i, qi, ξ)|ξ]− E[q−1

i E[Var(c(X)|ψ2,i, pi, ξ)|ψ1,i, qi, ξ]|ξ]

= E[q−1
i Var(c(Xi)|ψ1,i, qi, ξ)|ξ]− E[q−1

i Var(c(X)|ψ2,i, pi, ξ)|ξ]

Also, Var(Yi(d)|ψ2,i, pi, ξ) = Var(E[Yi(d)|Xi, ξ]|ψ2,i, pi, ξ)]+E[Var(Yi(d)|Xi, ξ)|ψ2,i, pi, ξ].
Using this fact gives

V3 = E[(qipi)
−1σ2

1,i|ξ] + E[(qi(1− pi))−1σ2
0,i|ξ]

= E[(qipi)
−1 Var(m1(Xi)|ψ2,i, pi, ξ)|ξ] + E[(qipi)

−1E[σ2
1(Xi)|ψ2,i, pi, ξ]|ξ]

+ E[(qi(1− pi))−1 Var(m0(Xi)|ψ2,i, pi, ξ)|ξ] + E[(qi(1− pi))−1E[σ2
0(Xi)|ψ2,i, pi, ξ]|ξ]

= E[(qipi)
−1 Var(m1(Xi)|ψ2,i, pi, ξ)|ξ] + E[(qi(1− pi))−1 Var(m0(Xi)|ψ2,i, pi, ξ)|ξ]

+ E[(qipi)
−1σ2

1(Xi)|ξ] + E[(qi(1− pi))−1σ2
0(Xi)|ξ]

The final equality by tower law and since qi ∈ σ(ψ2,i, pi, ξ) by construction. Putting this
all together, we get total variance

V1 + V2 + V3 = Var(c(Xi))− E[Var(c(Xi)|ψ1,i, qi, ξ)|ξ]

+ E[q−1
i Var(c(Xi)|ψ1,i, qi, ξ)|ξ]− E[q−1

i Var(c(X)|ψ2,i, pi, ξ)|ξ]

+ E[(qipi)
−1 Var(m1(Xi)|ψ2,i, pi, ξ)|ξ] + E[(qi(1− pi))−1 Var(m0(Xi)|ψ2,i, pi, ξ)|ξ]

+ E[(qipi)
−1σ2

1(Xi)|ξ] + E[(qi(1− pi))−1σ2
0(Xi)|ξ]

= T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8

Note that T2 + T3 = E[q−1
i (1− qi) Var(c(Xi)|ψ1,i, qi, ξ)|ξ]. Also note that

− Var(c(Xi)|ψ2,i, pi, ξ) + p−1
i Var(m1(Xi)|ψ2,i, pi, ξ) + (1− pi)−1 Var(m0(Xi)|ψ2,i, pi, ξ)

= p−1
i (1− pi) Var(m1(Xi)|ψ2,i, pi, ξ) + pi(1− pi)−1 Var(m0(Xi)|ψ2,i, pi, ξ)

+ 2 Cov(m1(Xi),m0(Xi)|ψ2,i, pi, ξ) = Var(b(Xi; pi)|ψ2,i, pi, ξ)
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Then we have T4 + T5 + T6 = E[q−1
i Var(b(Xi; pi)|ψ2,i, pi, ξ)|ξ]. Then as claimed

V =
8∑

k=1

Tk = Var(c(X)) + E[q−1
i (1− qi) Var(c(Xi)|ψ1,i, qi, ξ)|ξ]

+ E[q−1
i Var(b(Xi; pi)|ψ2,i, pi, ξ)|ξ] + E

[
q−1
i

(
σ2

1(Xi)

pi
+
σ2

0(Xi)

1− pi

) ∣∣∣∣ξ] .
Finally, note En[Ti] = En[Ti−qi]+En[qi] = op(n

−1/2)+En[qi] = E[qi|ξ]+Op(n
−1/2). The

second equality by Lemma A.3, and the third by conditional Chebyshev (Lemma C.2).
Then

√
nT (θ̂ − ATE) =

√
n(En[Ti])

1/2(θ̂ − ATE) = E[qi|ξ]1/2
√
n(θ̂ − ATE) + op(1) ⇒

N(0, E[q(X, ξ)] · V ) by continuous mapping theorem and Slutsky. This finishes the
proof

A.4 Optimal Design

Proof of Proposition 4.1. Define V (q) = E[σ̄2(ψ)/q(ψ)]. Define the sets

Q′ = {q ∈ Rψ : |q|∞ <∞, q > 0, E[C(ψ)q(ψ)] ≤ B̄, V (q) <∞} Q = Q′∩{0 < q ≤ 1}

and recall the candidate optimal solution q∗(ψ) = B̄ · σ̄(ψ)C(ψ)−1/2/E[σ̄(ψ)C(ψ)1/2].
Let t ∈ [0, 1] and q1, q2 ∈ Q′. By convexity of y → 1/y on (0,∞), for each ψ ∈ ψ we
have

σ̄2(ψ)

tq1(ψ) + (1− t)q2(ψ)
≤ t

σ̄2(ψ)

q1(ψ)
+ (1− t) σ̄

2(ψ)

q1(ψ)

Taking expectations of both sides gives V (tq1 +(1− t)q2) ≤ tV (q1)+(1− t)V (q2), so V is
convex on {q > 0} and Q′ is convex. We claim that q∗ ∈ Q′. First, q∗ ∈ (0, 1] by assump-
tion. Since supψ∈ψ q

∗ ≤ 1 we have E[σ̄(ψ)C(ψ)1/2] > 0. By Holder E[σ̄(ψ)C(ψ)1/2] ≤
E[σ̄2(ψ)]1/2E[C(ψ)]1/2 < ∞. Then we have V (q∗) = B̄−1E[σ̄(ψ)C(ψ)1/2]2 < ∞. Also
clearly E[C(ψ)q∗(ψ)] = B̄. This shows the claim. Next, suppose that q∗ + t∆ ∈ Q′ for
some t ∈ [0, 1] and |∆|∞ < M . Since q∗ ∈ Q′, by convexity of Q′, q∗ + t′∆ ∈ Q′ for
all 0 ≤ t′ ≤ t. Then dVq∗ [∆] ≡ lim supt→0+ t

−1(V (q∗ + t∆)− V (q∗)) is well-defined. We
claim that this limit exists. Under our assumptions q∗ > ql ≥ 0 for some ql, so that for
any ψ and all t ≤ q2

l /2M <∞∣∣∣∣t−1

(
σ̄2(ψ)

q∗(ψ) + t∆(ψ)
− σ̄2(ψ)

q∗(ψ)

)∣∣∣∣ =
|σ̄2(ψ)∆(ψ)|

((q∗)2 + q∗t∆)(ψ)
≤ M |σ̄2(ψ)|

q2
l − tM

≤ M |σ̄2(ψ)|
2q2
l
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Since ‖σ̄2‖1 <∞, dominated convergence implies

dVq∗ [∆] = lim
t→0+

t−1(V (q∗ + t∆)− V (q∗)) = E

[
lim
t→0+

−σ̄2(ψ)∆(ψ)

((q∗)2 + q∗t∆)(ψ)

]
= −E

[
σ̄2(ψ)∆(ψ)

(q∗)2(ψ)

]
= (1/q̄)2E [C(ψ)∆(ψ)]E

[
σ̄(ψ)C(ψ)1/2

]2
= 0

The last line since q∗ + t∆ ∈ Q′ implies B̄ = E[q∗(ψ)C(ψ) + t∆(ψ)C(ψ)] = B̄ +

tE[∆(ψ)C(ψ)], so that E[∆(ψ)C(ψ)] = 0. Let q ∈ Q′, so that ∆ = q−q∗ has |∆|∞ <∞.
Then by convexity V (q)−V (q∗) ≥ dVq∗ [q− q∗] = 0, showing that q∗ = argminq∈Q′ V (q).
Since q∗ ∈ Q by assumption, it is optimal over Q ⊆ Q′ as well.

Proof of Theorem 5.2. Suppose that T1:n ∼ Loc(ψ, q̂n(ψ)) and D1:n ∼ Loc(ψ, p̂n(ψ)).
Similar to the proof of Theorem 3.11, define σ-algebras F1,n = σ(ψ1:n, πn, ξn), F2,n =

σ(F1,n, T1:n), and F3,n = σ(F2,n, D1:n). Next, expand the estimator

θ̂ − θ = En[c(ψi)− θ] + En

[
Ti − q̂i,n
q̂i,n

c(ψi)

]
+ En

[
Ti(Di − p̂i,n)

q̂i,n
√
p̂i,n(1− p̂i,n)

b(ψi; p̂n)

]

+ En

[
DiTiε

1
i

p̂i,nq̂i,n
+

(1−Di)Tiε
0
i

(1− p̂i,n)q̂i,n

]
≡ An +Bn + Cn +Rn

Our main task is to show that
√
nBn,

√
nCn = op(1). We do this by modifying the

proof of Lemma A.3.

(1) Balancing Argument - Note that the term Cn has

Cn = En

[
Ti(Di − p̂n(ψi))

q̂n(ψi)

(
m1(ψi)

p̂n(ψi)
+

m0(ψi)

1− p̂n(ψi)

)]
= Cn1 + Cn2.

Recall q∗(ψ) = B̄(σ1(ψ) + σ0(ψ))C(ψ)−1/2/E[(σ1(ψ) + σ0(ψ))C(ψ)1/2]. Under our as-
sumptions, it’s clear that infψ q

∗(ψ) > 0. Consider the term above involving m1(ψ). We
have E[m1(ψ)2/q∗(ψ)2] . E[m0(ψ)2] < ∞. Then the construction in Lemma A.3 pro-
vides functions hn ∈ L2(ψ) with |hn|lip ∨ |hn|∞ ≤ cn and |hn − (m1/q

∗)|2,ψ → 0. Define
Fn = σ(ψ1:n, ξn, πn, τ

t). Note that Gn, (q∗(ψi))1:n, (q̂n(ψi))1:n, (p̂n(ψi))1:n ∈ Fn. Then by
Lemma A.2 E[Cn1|Fn] = 0. We can expand Cn1 as

En

[
Ti(Di − p̂n(ψi))

p̂n(ψi)

((
m1(ψi)

q̂n(ψi)
− m1(ψi)

q̂(ψi)

)
+

(
m1(ψi)

q̂(ψi)
− m1(ψi)

q∗(ψi)

)
+
m1(ψi)

q∗(ψi)

)]
and write Cn1 = Tn1 + Tn2 + Tn3. Consider the first term. By construction, |q̂n − q̂|∞ ≤
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1/kn. Then by Lemma A.2 we have E[Bn1|Fn] = 0 and

Var(
√
nTn1|Fn) . En[m1(ψi)

2(q̂n − q̂)2(ψi)/p̂n(ψi)
2] . o(1)En[m1(ψi)

2] = op(1)

Again by Lemma A.2 we have

Var(
√
nTn2|Fn) . En[m1(ψi)

2(q̂ − q∗)2(ψi)/p̂n(ψi)
2] .

n
max
i=1

m1(ψi)
2En[(q̂ − q∗)2(ψi)]

The final expression is op(n2/α2−2r)+O(n2/α2/k
2

n), using Lemma C.8 and the bound from
Lemma C.1. This is op(1) under our assumptions. Consider the final term Tn3

Tn3 = En

[
Ti(Di − p̂n(ψi))

p̂n(ψi)

((
m1(ψi)

q∗(ψi)
− hn(ψi)

)
+ hn(ψi)

)]
= Tn4 + Tn5

As above E[Tn4|Fn] = 0 and Var(
√
nTn4|Fn) . En[(m1(ψi)/q

∗(ψi) − hn(ψi))
2] = op(1)

by Markov inequality since |hn − (m1/q
∗)|2,X → 0. Finally, by the last part of Lemma

A.2 we have E[Tn5|Fn] = 0 and

Var(
√
nTn5|Fn) = n−1

∑
g∈Gn

1

|g|
∑
i,j∈g

(hn(ψi)− hn(ψi))
2 + n−1kn|Ln|

n
max
i=1

hn(ψi)
2

. c2
nn
−1
∑
g∈Gn

1

|g|
∑
i,j∈g

|ψi − ψj|22 + n−1kn|Ln|
n

max
i=1

hn(ψi)
2

. c2
n

n
max
i=1
|ψi|22 ·O((n/kn|Ln|)−2/(d+1)) + n−1kn|Ln|Op(c

2
n)

= op(c
2
nn

2/α1−2/(d+1)(kn|Ln|)2/(d+1)) = op(1)

The first inequality by Lipschitz continuity, the second inequality by Theorem A.1. The
final equality holds if kn|Ln| = o(n

1− d+1
α1 ) and cn = O(n2/α1−2/(d+1)(kn|Ln|)2/(d+1)) with

cn → ∞. This finishes the proof that
√
nBn = op(1). An identical proof shows that

√
nCn = op(1).

(2) CLT Argument - By the previous argument, we have
√
n(θ̂ − θ) =

√
nAn +

√
nRn + op(1).

√
nAn ⇒ N (0, V1) with V1 = Var(c(ψ)) by vanilla CLT. We want to

apply Theorem A.5 to the term
√
nRn. The moment bound is satisfied by assumption.

For condition (a2), set ψk,n(ψ) = ψ, pi = p∗i , and qi = q∗i . The propensity lower and
upper bounds follow from our assumptions on σd(ψ). Condition (c) is shown in Lemma
C.1. Then by Theorem A.5

√
nRn|F3,n ⇒ N (0, V2) with V2 = E[(q∗i p

∗
i )
−1σ2

1(ψi)+(q∗i (1−
p∗i ))

−1σ2
0(ψi)] by Theorem A.5. Then by Lemma C.6,

√
n(An + Rn) ⇒ N (0, V1 + V2).
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Applying Lemma A.2 with hn = 1 shows that Var(En[(Ti − q̂i,n)]|F1,n) ≤ n−1kn|Ln|.
Then En[Ti] = En[q̂i,n] + Op((kn|Ln|/n)1/2) and En[q̂i,n] = En[q̂i] + O(1/kn), since |q̂ −
q̂n|∞ = O(1/kn) by discretization. Finally, En[q̂i] = En[q∗i ] + op(1) by Lemma C.1.
Putting this all together, we have En[Ti] = En[q∗i ]+op(1) = E[q∗i ]+op(1), so that

√
nT (θ̂−

ATE) =
√
n(En[Ti])

1/2(θ̂−ATE) = E[q∗(ψi)]
1/2
√
n(θ̂−ATE) + op(1)⇒ N(0, E[q∗(ψi)] ·

V ) by continuous mapping theorem and Slutsky. This finishes the proof. The conclusion
for Theorem 4.3 follows by setting q̂ = q∗ and q̂n = q∗n, so that the error Tn2 above is
identically zero.

Proof of Theorem 4.5. Fix P ∈ P1/2. By the fundamental expansion of the IPW esti-
mator, θ̂ = En[c(Xi)] + 2En[(Di − 1/2)b(Xi)] + 2En[Diε

1
i + (1−Di)ε

0
i ] ≡ An +Bn +Cn.

Then by the law of total variance

Var(θ̂|X1:n) = Var(Bn + Cn|X1:n) = E[Var(Bn + Cn|X1:n, D1:n)|X1:n]

+ Var(E[Bn + Cn|X1:n, D1:n]|X1:n) = E[Var(Cn|X1:n, D1:n)|X1:n] + Var(Bn|X1:n)

The last line follows since E[Cn|X1:n, D1:n] = 0. One can showE[Var(Cn|X1:n, D1:n)|X1:n] =

(2/n)En[σ2
1(Xi)+σ

2
0(Xi)], which does not depend on P . Then argminP∈P1/2

Var(θ̂|X1:n) =

argminP∈P1/2
Var(Bn|X1:n). Denote Zi = Di − 1/2. Then n2 Var(Bn|X1:n) is equal to

E[(Z ′1:nb1:n)2] =
∑

d1:n∈{0,1}n
P (d1:n|X1:n)(Z ′1:nb1:n)2 ≥ min

d1:n∈{0,1}n
((Di − 1/2)′1:nb1:n)2

Let d∗1:n = d∗1:n(X1:n) be a vector achieving the RHS minimum. Define P ∗ ∈ P1/2 by
P ∗(d∗1:n|X1:n) = P ∗(1− d∗1:n|X1:n) = 1/2. Then

n2 min
P∈P1/2

Var(Bn|X1:n) ≥ ((d∗1:n − (1/2)1n)′b1:n)2 = EP ∗ [(D1:n − (1/2)1n)′b1:n)2]

= n2 VarP ∗(Bn|X1:n) ≥ n2 min
P∈P1/2

Var(Bn|X1:n)

The final equality since P ∗ ∈ P1/2 by construction. Then equality holds throughout, and
P ∗ ∈ argminP∈P1/2

Var(Bn|X1:n) = argminP∈P1/2
Var(θ̂|X1:n). Next, we characterize the

optimal vector d∗1:n. Observe that (di−1/2)(dj−1/2) = (di−1/2)(dj−1/2)−1/4+1/4 =

−(1/2)1(di 6= dj) + 1/4. Then argmind1:n∈{0,1}n((d1:n − (1/2)1n)′b1:n)2 is equal to

argmin
d1:n∈{0,1}n

n∑
i,j=1

(di − 1/2)(dj − 1/2)bibj = argmax
d1:n∈{0,1}n

n∑
i 6=j

1(di 6= dj)bibj
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The latter problem is equivalent to Max-Cut with edge weights wij = bibj, as claimed.

A.5 Inference

Proof of Theorem 6.1. First, consider the sample variance. The second moment is

En

[(
Ti(Di − p(ψi))Yi
q(ψi)(p− p2)(ψi)

)2
]

= En

[
TiDiYi(1)2

p2
i q

2
i

]
+ En

[
Ti(1−Di)Yi(0)2

(1− pi)2q2
i

]

Consider the first term

En[TiDiYi(1)2/(p2
i q

2
i )] = En[Ti(Di − pi)Yi(1)2/(p2

i q
2
i )] + En[(Ti − qi)Yi(1)2/(piq

2
i )]

+ En[Yi(1)2/(piqi)] = En[Yi(1)2/(piqi)] + op(1) = E[Yi(1)2/(piqi)] + op(1)

The first equality is by Lemma A.2, and the second by WLLN. Then by symmetry
En[Ti(1−Di)Yi(0)2/(1−pi)2q2

i ] = E[Yi(0)2/(1−pi)qi]+op(1). Then the sample variance in
the theorem converges in probability to v = E[Yi(1)2/(piqi)]+E[Yi(0)2/(1−pi)qi]−ATE2.
With V the limiting variance of Theorem 3.11, simple algebra shows that

v − V = E[m2
1i(1− piqi)/piqi] + E[m2

0i(1− qi(1− pi))/(qi(1− pi))] + 2E[m1im0i].

Then the conclusion follows from the consistency results in Lemma A.6.

Lemma A.6 (Inference). Suppose that E[Y (d)2] < ∞ for d = 0, 1. Replace wdi in the
variance estimators in Section 6 with a bounded non-negative function ai = a(ψi). Then
we have v̂1

p→ E[qipim
2
1iai], v̂0

p→ E[qi(1− pi)m2
0iai], and v̂10

p→ E[qim1im0iai].

Proof. First, we show the homogeneity condition n−1
∑

g∈Gνn

∑
i,j∈g |ψi−ψj|22 = o(1) also

holds for the matched groups Gνn = {g ∪ ν(g) : g ∈ Gn}. Note that we may write

n−1
∑
g∈Gνn

∑
i,j∈g

|ψi − ψj|22 = (2n)−1
∑
g∈Gn

∑
i,j∈g∪ν(g)

|ψi − ψj|22

= (2n)−1
∑
g∈Gn

∑
i∈g,j∈ν(g)

|ψi − ψj|22 + (2n)−1
∑
g∈Gn

∑
i 6=j

|ψi − ψj|221(ij ∈ g or ij ∈ ν(g))
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The second term is o(1) by Theorem A.1. By Young’s inequality, the first term is

. n−1
∑
g∈Gn

∑
i∈g,j∈ν(g)

|ψi − ψ̄g|22 + |ψ̄g − ψ̄ν(g)|22 + |ψ̄ν(g) − ψj|22

≤ 2n−1
∑
g∈Gn

k(g)
∑
i∈g

|ψi − ψ̄g|22 + k̄2n−1
∑
g∈Gn

|ψ̄g − ψ̄ν(g)|22

The second term is o(1) again by Theorem A.1. The first term is

2n−1
∑
g∈Gn

k(g)
∑
i∈g

|k(g)−1
∑
j∈g

(ψi − ψj)|22 ≤ 2n−1
∑
g∈Gn

∑
i,j∈g

|ψi − ψj|22 = o(1)

again by triangle inequality, Jensen, and Theorem A.1. This finishes our proof of the
claim.

Denote vi = m1(ψi)
√
a(ψi). By Lemma C.5, there exists a sequence (zn)n≥1 of

functions with |zn|lip ≤ cn and |zn−m1(ψ)2a(ψ)|2,ψ = o(1). Observe that |zn|2,ψ = O(1)

since m1(ψ)2a(ψ) ∈ L2(ψ). For matched groups g = g1tg2 with assignment propensities
a1/k1 and a2/k2 in each group, define the group weight wg = 1/(a1 +a2−1) and variance
estimator

v̂1 = n−1
∑
g∈Gνn

wg
∑
i,j∈g

Yi(1)Yj(1)(aiaj)
1/2DiDj1(i 6= j)

= n−1
∑
g∈Gνn

wg
∑
i,j∈g
i 6=j

(m1(ψi) + ε1i )(m1(ψj) + ε1j)(aiaj)
1/2DiDj = An +Bn + Cn +Rn.

Consider the first term An. Noting that ab = −(1/2)[(a− b)2 − a2 − b2], we have

An = n−1
∑
g∈Gνn

wg
∑
i,j∈g

vivjDiDj1(i 6= j) = −(2n)−1
∑
g∈Gνn

wg
∑
i,j∈g

(vi − vj)2DiDj

+ (2n)−1
∑
g∈Gνn

wg
∑
i,j∈g

(v2
i + v2

j )DiDj1(i 6= j) ≡ A1
n + A2

n
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Denote zin = zn(ψi) and let k̄ = maxg∈G |g|. Observe that by Jensen’s inequality

|A1
n| ≤ (2n)−1

∑
g∈Gνn

∑
i,j∈g
i 6=j

(vi − vj)2 = (2n)−1
∑
g∈Gνn

∑
i,j∈g
i 6=j

(vi − zin + zin − zjn + zjn − vj)2

≤ 3(2n)−1
∑
g∈Gνn

∑
i,j∈g
i 6=j

|vi − zin|2 + |zin − zjn|2 + |zjn − vj|2

Continuing, this is

. n−1
∑
g∈Gνn

(|g| − 1)
∑
i∈g

|vi − zin|2 + c2
n · n−1

∑
g∈Gνn

∑
i,j∈g

|ψi − ψj|22

≤ (k̄ − 1)n−1En[Ti|vi − zin|2] + op(1) . En[|vi − zin|2] + op(1) = op(1)

For the second to last inequality, set cn = O(r−2
n ) for n−1

∑
g∈Gνn

∑
i,j∈g |ψi−ψj|22 = o(rn),

as guaranteed by the fact above. For the final equality, note that E[En[|vi − zin|2]] =

|vi − zin|22,ψ = o(1), so that En[|vi − zin|2] = op(1) by Markov inequality. Next,

A2
n = (2n)−1

∑
g∈Gνn

wg
∑
i,j∈g
i 6=j

(v2
i + v2

j )DiDj = 2 · (2n)−1
∑
g∈Gνn

wg
∑
i∈g

v2
iDi

∑
j∈g
j 6=i

Dj

= 2 · (2n)−1
∑
g∈Gνn

∑
i∈g

v2
iDiwg(a1 + a2 − 1) = n−1

∑
g∈Gνn

∑
i∈g

v2
iDi = En[v2

iDiTi]

Finally, note that En[v2
iDiTi] = E[v2

i piqi] + op(1) by Lemma A.2. Next we claim that
Rn = op(1). It suffices to verify the conditions of Lemma C.7 for

ug = wg
∑
i,j∈g

ε1i ε
1
j(aiaj)

1/2DiDj1(i 6= j) = wg
∑
i 6=j

ε1i ε
1
j(aiaj)

1/2DiDj1(ij ∈ g)

Define Fn = σ(ψ1:n, τ
t, πn), so that Gνn, D1:n ∈ Fn. Note that ug ⊥⊥ ug′ |Fn for g 6= g′

by Lemma C.9. We also need to show E[ug|Fn] = 0 for each g ∈ Gνn. Note that
E[ug|Fn] = E[E[ug|F ′n]Fn] with F ′n = σ(Fn, τ d) and D1:n ∈ F ′n. Repeatedly using
the fact that (A,B) ⊥⊥ C =⇒ A ⊥⊥ C|B, we have E[ε1i ε

1
j |F ′n] = E[ε1i ε

1
j |ψi, ψj] =

E[ε1jE[ε1i |ε1j , ψi, ψj]|ψi, ψj] = E[ε1jE[ε1i |ψi]|ψi, ψj] = 0. Then apparently E[ug|Fn] = 0 for
all g ∈ Gνn. Finally, Lemma C.7 requires the condition 1

n

∑
g∈Gνn

E[|ug|1(|ug| > cn)|Fn] =

op(1). Observe that for any positive constants (ak)
m
k=1 we have

∑
k ak1(

∑
k ak > c) ≤

m
∑

k ak1(ak > c/m) and ab1(ab > c) ≤ a21(a2 > c) + b21(b2 > c). Let cn → ∞ and
let k̄ = maxg∈Gνn |g|. Using the indicator function facts above, for any group g ∈ Gνn,
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E[|ug|1(|ug| > cn)|Fn] is bounded above by

E

[∑
i,j∈g

|ε1i ||ε1j |(aiaj)1/21(i 6= j)1

(∑
i,j∈g

|ε1i ||ε1j |(aiaj)1/21(i 6= j) > cn

)∣∣∣∣Fn
]

≤ k̄2
∑
i,j∈g
i 6=j

E

[
|ε1i ||ε1j |(aiaj)1/21

(
|ε1i ||ε1j |(aiaj)1/2 > cn/k̄

2
) ∣∣∣∣Fn]

≤ 2k̄3
∑
i∈g

E

[
ai(ε

1
i )

21
(
ai(ε

1
i )

2 > cn/k̄
2
) ∣∣∣∣Fn] = 2k̄3

∑
i∈g

E

[
ai(ε

1
i )

21
(
ai(ε

1
i )

2 > cn/k̄
2
) ∣∣∣∣ψi]

The first line by triangle inequality and since wg ≤ 1. The second and third inequalities
use the fact about indicator functions above. The last line again uses the fact that
(A,B) ⊥⊥ C =⇒ A ⊥⊥ C|B, combined with iid sampling and independence of (τ t, πn)

from the data W1:n. Then since Gνn is a partition of {Ti = 1} ⊆ [n], we have

1

n

∑
g∈Gνn

E[|ug|1(|ug| > cn)|Fn] .
2k̄3

n

n∑
i=1

E

[
ai(ε

1
i )

21
(
ai(ε

1
i )

2 > cn/k̄
2
) ∣∣∣∣ψi]

Taking an expectation of the RHS gives 2k̄3E[ai(ε
1
i )

21
(
ai(ε

1
i )

2 > cn/k̄
2
)
] = o(1) as n→

∞ since E[ai(ε
1
i )

2] ≤ |a|∞E[Var(Y (1)|ψ)] . Var(Y (1)) <∞. Then by Markov inequal-
ity 1

n

∑
g∈Gνn

E[|ug|1(|ug| > cn)|Fn] = op(1), so Rn = op(1) by Lemma C.7. An identical
argument shows that Bn, Cn = op(1). Then we have shown that v̂1 = E[v2

i piqi] + op(1).
By symmetry, v̂0 = E[v2

i (1− pi)qi] + op(1).

Next, consider the cross-term estimator.

v̂10 = n−1
∑
g∈Gn

wg
∑
i,j∈g

Yi(1)Yj(0)(aiaj)
1/2Di(1−Dj)

= n−1
∑
g∈Gn

wg
∑
i,j∈g

(m1i + ε1i )(m0j + ε0j)(aiaj)
1/2Di(1−Dj) = An +Bn + Cn +Rn

Denote vdi = mdia
1/2
i and let Fn = σ(ψ1:n, τ

t, πn) as before. Note the equality aibj+biaj =

−(ai − aj)(bi − bj) + aibi + ajbj. Then the conditional expectation E[An|Fn] is equal to

n−1
∑
g∈Gn

wg
∑
i,j∈g

E[v1
i v

0
jDi(1−Dj)|Fn] = n−1

∑
g∈Gn

wg
∑
i,j∈g

v1
i v

0
j

a(k − a)

k(k − 1)
1(i 6= j)
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Expanding using the fact above gives

= n−1
∑
g∈Gn

wg
a(k − a)

k(k − 1)

∑
i<j∈g

(v1
i v

0
j + v1

j v
0
i ) = −n−1

∑
g∈Gn

wg
a(k − a)

k(k − 1)

∑
i<j∈g

(v1
i − v1

j )(v
0
i − v0

j )

+ n−1
∑
g∈Gn

wg
a(k − a)

k(k − 1)

∑
i<j∈g

(v1
i v

0
i + v1

j v
0
j ) ≡ Tn1 + Tn2

First consider Tn1. By Young’s inequality we have

|Tn1| . n−1
∑
g∈Gn

∑
i<j∈g

|v1
i − v1

j ||v0
i − v0

j | ≤ (2n)−1
∑
g∈Gn

∑
i,j∈g

|v1
i − v1

j |2 + |v0
i − v0

j |2

The form of each expression is identical to our analysis of A1
n above. Then Tn1 =

op(1) by the same argument. Next consider Tn2. By counting, it’s easy to see that∑
i<j∈g(v

1
i v

0
i + v1

j v
0
j ) = (k − 1)

∑
i∈g v

1
i v

0
i . Then setting wg = k/(a(k − a)) gives

Tn2 = n−1
∑
g∈Gn

wg
a(k − a)

k(k − 1)
(k − 1)

∑
i∈g

v1
i v

0
i = n−1

∑
g∈Gn

∑
i∈g

v1
i v

0
i

= En[Tiv
1
i v

0
i ] = En[qiv

1
i v

0
i ] + En[(Ti − qi)v1

i v
0
i ] = E[qim1im0iai] + op(1)

The third equality since Gn partitions the units {Ti = 1}. The final equality follows from
Lemma A.2. Next consider

An − E[An|Fn] = n−1
∑
g∈Gn

∑
i,j∈g

wgv
1
i v

0
j

(
Di(1−Dj)−

a(k − a)

k(k − 1)

)
1(i 6= j) ≡ n−1

∑
g∈Gn

ug

We have E[ug|Fn] = 0 for all g ∈ Gn by the calculation of E[An|Fn] above. Also, note
ug ⊥⊥ ug′ |Fn for all g 6= g′ by Lemma C.9. Then by Lemma C.7, it suffices to show that
1
n

∑
g∈Gvn

E[|ug|1(|ug| > cn)|Fn] = op(1) for some cn →∞ with cn = o(n1/2). It’s easy to
see that wg ≤ 2, so we have

|ug| ≤
∑
i,j∈g

wg|v1
i ||v0

j |
∣∣∣∣Di(1−Dj)−

a(k − a)

k(k − 1)

∣∣∣∣1(i 6= j) ≤
∑
i,j∈g

|v1
i ||v0

j |

Then using the indicator function bounds in our analysis above, E[|ug|1(|ug| > cn)|Fn]
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is bounded above by

E

[∑
i,j∈g

|v1
i ||v0

j |1

(∑
i,j∈g

|v1
i ||v0

j | > cn

)
|Fn

]
≤ k̄2

∑
i,j∈g

E
[
|v1
i ||v0

j |1
(
|v1
i ||v0

j | > cn/(k̄)2
)
|Fn
]

≤ k̄3
∑
i∈g

(
E
[
|v1
i |21

(
|v1
i |2 > cn/(k̄)2

)
|Fn
]

+ E
[
|v0
i |21

(
|v0
i |2 > cn/(k̄)2

)
|Fn
])

≤ k̄3
∑
i∈g

(
E
[
|v1
i |21

(
|v1
i |2 > cn/(k̄)2

)
|ψi
]

+ E
[
|v0
i |21

(
|v0
i |2 > cn/(k̄)2

)
|ψi
])

Then 1
n

∑
g∈Gvn

E[|ug|1(|ug| > cn)|Fn] is bounded above by

k̄3 1

n

∑
g∈Gvn

∑
i∈g

(
E
[
|v1
i |21

(
|v1
i |2 > cn/(k̄)2

)
|ψi
]

+ E
[
|v0
i |21

(
|v0
i |2 > cn/(k̄)2

)
|ψi
])

= k̄3En[TiE[|v1
i |21(|v1

i |2 > cn/(k̄)2)|ψi]] + En[TiE[|v0
i |21(|v0

i |2 > cn/(k̄)2)|ψi]]

≤ k̄3En[E[|v1
i |21(|v1

i |2 > cn/(k̄)2)|ψi]] + En[E[|v0
i |21(|v0

i |2 > cn/(k̄)2)|ψi]]

Taking expectation of the final line gives
∑

d=0,1E[|vdi |21(|vdi |2 > cn/(k̄)2)] → 0 as
n → ∞ by dominated convergence. Then by Markov inequality, we have shown that
1
n

∑
g∈Gn E[|ug|1(|ug| > cn)|Fn], so An − E[An|Fn] = op(1) by Lemma C.7. Next, note

that Bn, Cn, Rn = op(1) by the exact argument used in our analysis of v̂1. Then we have
shown that v̂10

p→ E[qim1im0iai] as claimed.
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Secondary Online Appendix to “Optimal Stratification of
Survey Experiments”

Max Cytrynbaum

This secondary online appendix is not intended for publication. It contains our
theoretical simulation results, as well as other non-essential supporting material.

B Simulations

This section presents simulations exhibiting the finite sample properties of our method.
Our asymptotic results show separate variance reductions from each of the following: (a)
finely treatment assignment, (b) finely stratified sampling and assignment, (c) using the
optimal propensities q∗(ψ) and p∗(ψ) (generally infeasible), and (d) using pilot estimates
q̂(ψ) and p̂(ψ) of the optimal propensities (feasible). In particular, designs (a)-(d) are
weakly increasing in asymptotic efficiency. To quantify the marginal efficiency gain from
each of our proposed methods in finite samples, we simulate unadjusted ATE estimation
under the following designs:

CR: Complete randomization T1:n ∼ CR(q∗k) and D1:n ∼ CR(p), with q∗k a dis-
cretization of the budget-exhausting sampling propensity q∗ = B̄/E[C(ψ)].21

CR, Loc: As in CR but with stratified assignment D1:n ∼ Loc(ψ, p).

Loc: Stratified sampling and assignment T1:n ∼ Loc(ψ, q∗k) and D1:n ∼ Loc(ψ, p).

Hom: As in Loc but with q∗hom,k(ψ) a discretization of q∗hom(ψ) = B̄·C(ψ)−1/2/E[C(ψ)1/2],
the optimal sampling propensity assuming homoskedasticity. This is feasible but
may be misspecified.

Opt: As in Loc but with q∗k(ψ) and p∗k22 discretizations of the optimal propensities
from Section 4, using oracle knowledge of the heteroskedasticity functions σ2

d(ψ)

(infeasible).

Pilot S/L: As in Opt, replacing the unknown optimal propensities q∗k(ψ) and p∗k
with q̂k(ψ) and p̂k estimated from a pilot of size (S) npilot = 100 or (L) npilot = 400.

21In particular, we let q∗k = a/k, using the minimal k such that q∗k · En[C(ψi)] ∈ [.95B̄, 1.05B̄].
22For simplicity, we focus on the optimal constant assignment propensity under fine stratification

(Equation 4.6).
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Variance functions σ2
d(ψ) are estimated using a modification of Fan and Yao (1998),

see appendix section 9.4 for details.

Discretization - In each of the designs with varying propensities we discretize by
choosing qk(·) to minimize En[(qk − q∗)2(ψi)] over the set of discretizations {q : q(ψ) ∈
a/10 : a = 1, . . . , 10} subject to number of propensity levels L = |Image(q)| ≤ 3.

Theory Predictions. Our results predict that there will be large variance re-
duction from stratified assignment, design CR to CR, Loc in the notation above, if
ψ predicts outcomes Y (d) well. Similarly, there will be large variance reductions from
stratified sampling (CR, Loc to Loc) if ψ predicts treatment effects Y (1)− Y (0) well,
from Loc to Hom if costs are heterogeneous and heteroskedasticity is mild, and from
Hom to Opt if there is significant heteroskedasticity. Moreover, the confidence intervals
from Section 6 should have close to nominal coverage. Let Yi(d) = md(ψi) + σ2

d(ψi)ε
d
i

with E[εdi |ψi] = 0 and Var(εdi |ψi) = 1 for d = 0, 1, and denote ν = dim(ψ). To test the
predictions of our theory, we simulate data from the following DGP’s:

Model 1 : Outcomes m0(ψ) = β′0ψ and m1(ψ) = β′1ψ + ψ′Qψ with β0 = 0, β1 =

3 · vec(1/m : m ∈ [ν]), and Q = (1/2)11′ with ψ ∼ Unif([−1, 1]ν). Costs c(ψ) =

1(ψ1 ≤ 0) + 10 · 1(ψ1 > 0), budget constraint B̄ = 4, and baseline treatment
proportions p = 3/8. Residuals εd ∼ N (0, Iν) with σ2

0 = 1 and σ2
1 = 9.

Model 2 : As in Model 1, but c(ψ) = 1(ψ1 ≤ 0) + 4 · 1(ψ1 > 0), budget constraint
B̄ = 1, and p = 1/2. Heteroskedasticity functions σ2

0(ψ) = 5 and σ2
1(ψ) = 5 + 30 ·

‖ψ‖2
2/ν and εd ∼ Unif([−1, 1]).

Model 3 : As in Model 1, but c(ψ) = 1/2 + 10 · ‖ψ‖2
2/ν, B̄ = 2, and σ2

d(ψ) = 2.

Model 4 : As in Model 1, but with β0 = 2 · vec(1/k : k ∈ [ν]) = (2/3)β1, and
Q = 211′. Costs as in Model 3 and heteroskedasticity as in Model 2.

Model 5 : As in Model 1, but with md(ψ) = 5 · g(β′dψ) for β0 = β1 = 10 · vec(1/m :

m ∈ [ν]) and g the Cauchy CDF, p = 1/2, and σ2
d(ψ) = 2.

Model 6 : As in Model 1, but outcomes m1(ψ) = 4
∑ν

m=1 sin(ψm) + 21′ψ and
m0(ψ) = 2

∑ν
m=1 cos(ψm) and ψ ∼ Unif([−π, π]ν), with p = 3/10 and σ2

d(ψ) = 6.

Table 2 presents our main results, computed using 1000 Monte Carlo repetitions,
discretizing propensities to level k = 8 in all cases. “SD” denotes estimator standard
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n = 800, dim(ψ) = 2 n = 400, dim(ψ) = 6

Design, DGP 1 2 3 4 5 6 1 2 3 4 5 6

SD

CR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CR, Loc 0.96 0.94 0.81 0.87 0.56 0.62 0.89 0.96 0.86 0.92 0.66 0.76

Loc 0.90 0.93 0.74 0.84 0.54 0.58 0.89 0.94 0.81 0.86 0.67 0.73
Hom. 0.93 0.91 0.74 0.89 0.55 0.58 0.88 0.93 0.81 0.88 0.66 0.74
Opt. 0.80 0.87 0.72 0.79 0.56 0.55 0.81 0.90 0.68 0.76 0.64 0.59

Pilot S 0.87 0.91 0.68 0.83 0.56 0.52 0.78 0.86 0.75 0.73 0.66 0.57
Pilot L 0.82 0.87 0.70 0.77 0.56 0.52 0.78 0.90 0.74 0.70 0.65 0.56

%∆CI

CR 0 0 0 0 0 0 0 0 0 0 0 0
CR, Loc -7 -3 -18 -12 -42 -35 -7 -3 -9 -6 -30 -18

Loc -9 -6 -24 -13 -42 -40 -9 -5 -11 -7 -29 -20
Hom. -14 -9 -26 -14 -45 -41 -13 -8 -10 -5 -33 -23
Opt. -21 -12 -30 -24 -45 -47 -21 -9 -24 -21 -33 -43

Pilot S -21 -12 -29 -22 -43 -46 -20 -11 -21 -22 -30 -40
Pilot L -21 -13 -30 -24 -44 -46 -21 -11 -23 -25 -32 -40

Cover

CR 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.94
CR, Loc 0.95 0.95 0.94 0.95 0.96 0.96 0.96 0.95 0.96 0.96 0.97 0.97

Loc 0.95 0.95 0.95 0.96 0.95 0.96 0.95 0.95 0.97 0.96 0.97 0.97
Hom. 0.92 0.95 0.96 0.95 0.95 0.90 0.94 0.94 0.97 0.97 0.95 0.96
Opt. 0.92 0.96 0.95 0.96 0.95 0.87 0.94 0.95 0.97 0.96 0.96 0.94

Pilot S 0.94 0.95 0.96 0.95 0.95 0.95 0.96 0.96 0.95 0.96 0.96 0.96
Pilot L 0.94 0.96 0.94 0.95 0.95 0.96 0.95 0.95 0.95 0.96 0.96 0.96

Table 2: Simulation Results
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deviation relative to designCR.23 “%∆CI” is percent change in confidence interval length
relative to the length underCR, using the asymptotically exact confidence intervals from
Section 6 for all designs.

Results. Our simulation results agree with the theory predictions above. For
example, Models 5 and 6 show large variance reductions from stratified assignment,
but not from stratified sampling since ψ is not predictive of treamtent effects Y (1) −
Y (0) in these models. By contrast, stratified sampling significantly reduces variance in
Models 1-3, where ψ is predictive of treatment effects. The simulation results also show
efficiency gains from incorporating costs C(ψ) into the sampling propensity q∗hom(ψ), even
without knowledge of the true heteroskedasticity function, as in design Hom. Models
2 and 4 have significant heteroskedasticity, and show further variance reduction from
incorporating oracle knowledge of σ2

d(ψ) into the globally optimal sampling propensity
q∗(ψ) in Opt. Design Pilot S is less efficient than Opt due to noisy estimation of σ2

d(ψ)

using a small pilot, while Pilot L is almost optimal. The results also show approximately
nominal coverage, and the confidence interval shrinkage in panel 2 reflects the efficiency
gains in panel 1.

C Supporting Theory

Lemma C.1 (Propensity Convergence). Suppose that |σ̂2
d−σ2

d|22,ψ = Op(n
−r) for d = 0, 1.

Then |p̂i,n − p∗i |22,n ∨ |q̂i,n − q∗i |22,n = O(1/k
2

n) +Op(n
−r).

Proof. We have |p̂i,n − p∗i |22,n ≤ 2|p̂i,n − p̂i|22,n + 2|p̂i − p∗i |22,n ≤ O(1/k
2

n) + |p̂i − p∗i |22,n by
discretization, and similarly for |q̂i,n− q∗i |22,n. Then it suffices to bound |p̂i− p∗i |22,n. Note

|σ̂d − σd|22,ψ =

∫
ψ

(σ̂2
d − σ2

d)
2(ψ)

(σ̂d + σd)2(ψ)
dP (ψ) ≤ c−1

l |σ̂
2
d − σ2

d|22,ψ = Op(n
−r).

Then |p̂i − p∗i |22,n is equal to

En[(σ̂1i/(σ̂1i + σ̂0i)− σ1i/(σ1i + σ0i))
2] ≤ 4c−2

l En[((σ1i − σ̂1i)σ̂0i + σ̂1i(σ̂0i − σ0i))
2]

. En[(σ1i − σ̂1i)
2σ̂2

0i] + En[σ̂2
1i(σ̂0i − σ0i))

2] . |σ̂0 − σ0|22,n + |σ̂1 − σ1|22,n

The last expression is equal to
∑

d=0,1 |σ̂d − σd|22,ψ + Op(n
−1/2) = Op(n

−r) + Op(n
−1/2)

23Note that E[θ̂ −ATE] = 0 for all designs and estimators, so we only report standard deviation.
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by conditional Markov inequality. Next consider |q̂ − q∗|22,n. Denote Ci = C(ψi). Define
µn = En[C

1/2
i (σ̂1i + σ̂0i)] and µ = E[C

1/2
i (σ1i + σ0i)]. Using ξn ⊥⊥ W1:n, by conditional

Chebyshev En[C
1/2
i σ̂di] = E[C

1/2
i σ̂di|ξn] +Op(n

−1/2). Then we have

(µn − µ)2 .
∑
d=0,1

(En[C
1/2
i σ̂di]− E[C

1/2
i σ̂di|ξn] + E[C

1/2
i σ̂di|ξn]− E[C

1/2
i σdi])

2

.
∑
d=0,1

(En[C
1/2
i σ̂di]− E[C

1/2
i σ̂di|ξn])2 + |C|∞Eψ[(σ̂di − σdi)2] = Op(n

−1) +Op(n
−r)

The first inequality is Young’s, the second by Young’s and Jensen. Define v̂i = C
−1/2
i (σ̂1i+

σ̂0i) and vi = C
−1/2
i (σ1i + σ0i).

|q̂ − q∗|22,n = q̄2En[(v̂i/µn − vi/µ)2] . (µnµ)−2(En[v̂2
i ](µ− µn) + µnEn[(v̂i − vi)2])

. (µ− µn)2 + En[(v̂i − vi)2] = Op(n
−r) +Op(n

−1/2)

The first inequality is Young’s, the second using our bounded variance assumption. The
final equality follows from work above. This finishes the proof.

C.1 Regression Equivalence Propositions

Proof of Proposition 3.6. First, consider the regression Y ∼ 1 + D + z̃ + Dz̃ defining
τ̂ and β̂. Define the within-arm regression coefficients α̂d = Varn(z̃i|Di = d, Ti =

1)−1 Covn(z̃i, Yi(d)|Di = d, Ti = 1) for d ∈ {0, 1}. E.g. by the calculations in Lin (2013),
we have β̂ = α̂1 − α̂0 and

τ̂ = θ̂ − (α̂1/p+ α̂0/(1− p))En [(Di − p)z̃i|Ti = 1]

Consider α̂1, for instance.

Varn(z̃i|Di = 1, Ti = 1) =
En[z̃iz̃

′
iDiTi]

En[DiTi]
− En[z̃iDiTi]En[z̃′iDiTi]

En[DiTi]2

By Definition 2.1, we have En[DiTi] = En[(Di− p)Ti] + pEn[Ti− q] + pq = pq+O(1/n).
Similarly, we expand En[z̃iz̃

′
iDiTi] = En[z̃iz̃

′
i(Di − p)Ti] + pEn[z̃iz̃

′
i(Ti − q)] + pqEn[z̃iz̃

′
i]

and En[z̃′iDiTi] = En[z̃i(Di − p)Ti] + pEn[z̃i(Ti − q)] + pqEn[z̃i]. It’s easy to check that
the conditions of Lemma A.2 are satisfied, so that En[z̃iz̃

′
iDiTi] = pqEn[z̃iz̃

′
i] +Op(n

−1/2)

and En[z̃iDiTi] = pqEn[z̃i] +Op(n
−1/2). Putting these facts together gives Varn(z̃i|Di =
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1, Ti = 1) = En[z̃iz̃
′
i] − En[z̃i]En[z̃′i] + Op(n

−1/2). Similarly, En[zi|Ti = 1] = En[zi] +

Op(n
−1/2) so

En[z̃iz̃
′
i]− En[z̃i]En[z̃′i] = En[ziz

′
i]− En[zi]En[z′i|Ti = 1]− En[zi|Ti = 1]En[z′i]

+ En[zi|Ti = 1]En[z′i|Ti = 1] = En[ziz
′
i]− En[zi]En[z′i] +Op(n

−1/2)

= Var(z) +Op(n
−1/2)

Similar reasoning shows that Covn(z̃i, Yi(d)|Di = d, Ti = 1) = Cov(z, Y (d)) +

Op(n
−1/2) if E[Y (d)2] < ∞. Note that Var(z) � 0 by the assumption that P (S =

k) > 0 ∀k ∈ [m]. Then we have α̂d = Var(z)−1 Cov(z, Y (d)) + Op(n
−1/2). Recall

z = (1(S = k))m−1
k=1 . For a function f(X) ∈ L1(X) define γ(f) = Var(z)−1 Cov(z, f(X)).

Then it’s easy to see that γ(f)′z = E[f(X)|S] − E[f(X)|S = m]. Now by above
work β̂ = α̂1 − α̂0 = Var(z)−1 Cov(z, Y (1) − Y (0)) + Op(n

−1/2) = γ(c) + Op(n
−1/2).

Similarly, α̂1/p + α̂0/(1 − p) = Var(z)−1 Cov(z, Y (1)/p + Y (0)/(1 − p)) + Op(n
−1/2) =

γ(b)(p− p)−1/2 +Op(n
−1/2). Then by the fundamental expansion of the IPW estimator,

we have

θ̌ = θ̂ − (α̂1/p+ α̂0/(1− p))En [(Di − p)z̃i|Ti = 1]− β̂′En
[
zi(Ti − q)

q

]
+Op(n

−1)

= θ̂ − γ(b)′En

[
(Di − p)zi
q
√
p− p2

]
− γ(c)′En

[
zi(Ti − q)

q

]
+Op(n

−1) = En [c(Xi)]

+ En

[
Ti − q
q

(c(Xi)− γ(c)′zi)

]
+ En

[
Ti(Di − p)
q
√
p− p2

(b(Xi)− γ(b)′zi)

]
+Rn +Op(n

−1)

= En [c(Xi)] + En

[
Ti − q
q

(c(Xi)− E[c(Xi)|Si])
]

+ En

[
Ti(Di − p)
q
√
p− p2

(b(Xi)− E[b|Si])

]
+Rn +Op(n

−1)

The first line uses En[zi|Ti = 1] = En[zi]/q + O(n−1) and En[(Di − p)En[zi|Ti = 1]] =

O(n−1) by stratification. The second line uses the probability limits established above
and that En[(Di − p)zi] = Op(n

−1/2) and En[(Ti − q)zi] = Op(n
−1/2). The final equality

follows from the characterization of Var(z)−1 Cov(z, f(X)) above and since En[(Di −
p)E[b(Xi)|Si = m]] = O(n−1) and E[(Ti−q)E[c(Xi)|Si = m]] = O(n−1) by stratification.
The final expansion is identical to that in the proof of Theorem 3.11. The conclusion
then follows by the same argument.
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Proof of Proposition 3.12. First we discuss cross-fitting. Denote Zi = (Wi, Di, Ti). Let
I1 t I2 = [n] be a random partition with |I1| � n and (I1, I2) ∈ σ(πn) for randomness
πn ⊥⊥ Z1:n. The estimator has form En[F (Zi, m̂I(i))]. Use the cross-fitting pattern
I(i) = I1 if i ∈ I2 and similarly for i ∈ I1. We may rearrange the summand of θ̂adj as

TiDiYi
qipi

− Yi(1−Di)Ti
qi(1− pi)

+ m̂1(ψi)− m̂0(ψi)−
Ti
qi

(
Dim̂1(ψi)

pi
− (1−Di)m̂0(ψi)

(1− pi)

)
=
TiDiYi
qipi

− Yi(1−Di)Ti
qi(1− pi)

+ m̂1(ψi)− m̂0(ψi)−
Ti
qi

(m̂1(ψi))− m̂0(ψi)))

− Ti(Di − pi)
qi

(
m̂1(ψi))

pi
− m̂0(ψi))

(1− pi)

)
Continuing the calculation, this is

=
TiDiYi
qipi

− Yi(1−Di)Ti
qi(1− pi)

− (Ti − qi)
qi

ĉ(ψi)−
Ti(Di − pi)
qi(pi − p2

i )
1/2
b̂(ψi)

= c(ψi) +
(Ti − qi)

qi
(c− ĉ)(ψi)−

Ti(Di − pi)
qi(pi − p2

i )
1/2

(b− b̂)(ψi) +
DiTiε

1
i

piqi
+

(1−Di)Tiε
0
i

(1− pi)qi

Consider the term T1,n = n−1
∑

i∈I1 q
−1
i (Ti − qi)(c − ĉ)(ψi, ZI2). By Lemma C.9 with

m = 2, g = I and h, τs = 1 we have ZI1 ⊥⊥ ZI2|πn. Then applying Lemma C.9

E[nT 2
1,n|πn, ZI2 ] = n−1

∑
i∈I1

E[q−2
i (Ti − qi)2(c− ĉ)(ψi, ZI2)2|πn, ZI2 ]

= n−1
∑
i∈I1

E[q−1
i (1− qi)(c− ĉ)(ψi, ZI2)2|πn, ZI2 ]

= n−1|I1|
∫

(1− q)(ψ)/q(ψ)(c− ĉ)(ψ,ZI2)2dP (ψ) . |c− ĉ(ZI2)|2,ψ = op(1)

Then
√
nT1,n = op(1). Then by symmetry

√
nEn[q−1

i (Ti − qi)(c − ĉ)(ψi)] = op(1). Sim-
ilarly,

√
nEn[ Ti(Di−pi)

qi(pi−p2i )1/2
(b − b̂)(ψi)] = op(1). The claim now follows from vanilla CLT,

noting that nT/n
p→ E[qi].
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C.2 Lemmas

Lemma C.2 (Conditional Convergence). Let (Gn)n≥1 and (An)n≥1 a sequence of σ-
algebras and RV’s. Define conditional convergence

An = op,Gn(1) ⇐⇒ P (|An| > ε|Gn) = op(1) ∀ε > 0

An = Op,Gn(1) ⇐⇒ P (|An| > sn|Gn) = op(1) ∀sn →∞

Then the following results hold

(i) An = op(1) ⇐⇒ An = op,Gn(1) and An = Op(1) ⇐⇒ An = Op,Gn(1)

(ii) E[|An||Gn] = op(1)/Op(1) =⇒ An = op(1)/Op(1)

(iii) Var(An|Gn) = op(c
2
n)/Op(c

2
n) =⇒ An − E[An|Gn] = op(cn)/Op(cn).

(iv) If (An)n≥1 has An ≤ Ā <∞ Gn-a.s. ∀n and An = op(1) =⇒ E[|An||Gn] = op(1)

Proof. (i) Consider that for any ε > 0

P (|An| > ε) = E[1(|An| > ε)] = E[E[1(|An| > ε)|Gn]] = E[P (|An| > ε|Gn)]

If An = op(1), then E[P (|An| > ε|Gn)] = o(1), so P (|An| > ε|Gn) = op(1) by Markov
inequality. Conversely, if P (|An| > ε|Gn) = op(1), then E[P (|An| > ε|Gn)] = o(1) since
(P (|An| > ε|Gn))n≥1 is uniformly bounded, hence UI. Then P (|An| > ε) = o(1). The
second equivalence follows directly from the first. (ii) follows from (i) and conditional
Markov inequality. (iii) is an application of (ii). For (iv), note that for any ε > 0

E[|An||Gn] ≤ ε+ E[|An|1(|An| > ε)|Gn] ≤ ε+ ĀP (|An| > ε|Gn) = ε+ op(1)

The equality is by (i) and our assumption. Since ε > 0 was arbitrary E[|An||Gn] =

op(1).

Definition C.3 (Conditional Weak Convergence). For random variables An, A ∈ Rd

and σ-algebras (Fn)n, G define conditional weak convergence

An|Fn ⇒ A|G ⇐⇒ E[eit
′An|Fn] = E[eit

′A|G] + op(1) ∀t ∈ Rd

We require a slight modification of the martingale difference CLT in Billingsley
(1995), allowing the weak limit to be a mixture of normals.

8



Proposition C.4 (MDS-CLT). Consider probability spaces (Ωn,Gn, Pn) each equipped
with filtration (Fk,n)k≥0. Suppose (Yk,n)nk=1 is adapted to (Fk,n)k≥0 and has E[Yk,n|Fk−1,n] =

0 for all k ≥ 1 with n→∞. Make the following definitions

Sk,n =
k∑
j=1

Yk,n σ2
k,n = E[Y 2

k,n|Fk−1,n] Σk,n =
k∑
j=1

σ2
k,n

Denote Sn ≡ Sn,n and Σn ≡ Σn,n. Suppose that σ2
k,n ∈ F0,n for all k, n and Σn =

σ2 + op(1) with σ2 ∈ F0,n. Also, suppose for each ε > 0

Lεn =
n∑
k=1

E[Y 2
k,n1(|Yk,n| ≥ ε)|F0,n] = op(1) (C.1)

Then E[eitSn|F0,n] = e−
1
2
t2σ2

+ op(1).

Proof. We modify the argument in Theorem 35.12 of Billingsley (1995).

E
[
eitSn − e−

1
2
t2σ2|F0,n

]
= E[eitSn(1− e

1
2
t2Σne−

1
2
t2σ2

)|F0,n]

+ E[e−
1
2
t2σ2

(e
1
2
t2ΣneitSn − 1)|F0,n]

For the first term, by conditional Jensen inequality

|E[eitSn(1− e
1
2
t2Σne−

1
2
t2σ2

)|F0,n]| ≤ E[|(1− e
1
2
t2Σne−

1
2
t2σ2

)||F0,n]

= |(1− e
1
2
t2Σne−

1
2
t2σ2

)| = op(1)

The first equality since Σn, σ
2 ∈ F0,n. Since Σn = σ2 + op(1), the second equality follows

by continuous mapping. The second term has

|E[e−
1
2
t2σ2

(e
1
2
t2ΣneitSn − 1)|F0,n]| = e−

1
2
t2σ2|E[(e

1
2
t2ΣneitSn − 1)|F0,n]|

= e−
1
2
t2σ2

∣∣∣∣∣
n∑
k=1

E[eitSk−1,ne
1
2
t2Σk,n(eitYk,n − e−

1
2
t2σ2

k,n)|F0,n]

∣∣∣∣∣
≤ e−

1
2
t2σ2

e
1
2
t2Σn

n∑
k=1

E[|eitSk−1,nE[eitYk,n − e−
1
2
t2σ2

k,n|Fk−1,n]||F0,n]

= e−
1
2
t2σ2

e
1
2
t2Σn

n∑
k=1

E[|E[eitYk,n − e−
1
2
t2σ2

k,n|Fk−1,n]||F0,n] ≡ op(1)Zn
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The first equality since σ2 ∈ F0,n. The second equality by telescoping. The first in-
equality by triangle inequality and since Σk,n ∈ F0,n, Σk,n ≤ Σn, and Sk−1,n ∈ Fk−1,n

for 1 ≤ k ≤ n. The final equality by continuous mapping since Σn
p→ σ2. We want

to show that Zn = Op(1). Fix ε > 0 and let Ik,n = 1(|Yk,n| > ε). Note the facts
|eix− (1 + ix− (1/2)x2)| ≤ (1/6)|x|3∧|x|2 and |ez− (1 + z)| ≤ |z|2e|z| for real x, complex
z. By the MDS property and E[Y 2

k,n|Fk−1,n] = σ2
k,n, combined with these facts

|E[eitYk,n − e−
1
2
t2σ2

k,n|Fk−1,n]| ≤ E[|tYk,n|3 ∧ |tYk,n|2 + (1/4)t4σ4
k,ne

1
2
t2σ2

k,n|Fk−1,n]

≤ (t2 + t4 + |t|3 + e
1
2
t2Σn)E[(ε|Yk,n|2 + |Yk,n|2Ik,n + σ4

k,n)|Fk−1,n]

≡ An,t(εσ
2
k,n + E[|Yk,n|2Ik,n|Fk−1,n] + E[σ4

k,n|Fk−1,n])

Then we have

Zn ≤ An,t

n∑
k=1

E[εσ2
k,n + E[|Yk,n|2Ik,n|Fk−1,n] + E[σ4

k,n|Fk−1,n]|F0,n]

= An,t(εΣn + Lεn) + An,t

n∑
k=1

E[σ4
k,n|F0,n] ≤ An,t(εΣn + Lεn + Σn(ε2 + Lεn))

To see the final inequality, note that σ4
k,n ≤ σ2

k,n maxnk=1 σ
2
k,n and We have σ2

k,n =

E[Y 2
k,n|Fk−1,n] ≤ ε2 +E[Y 2

k,nIk,n|Fk−1,n] ≤ ε2 +
∑n

j=1 E[Y 2
j,nIj,n|Fj−1,n]. Taking maxnk=1 on

both sides gives maxnk=1 σ
2
k,n ≤ ε2 +

∑n
j=1E[Y 2

j,nIj,n|Fj−1,n]. Then
∑n

k=1E[σ4
k,n|F0,n] ≤∑n

k=1E[σ2
k,n(ε2 +

∑n
j=1 E[Y 2

j,nIj,n|Fj−1,n])|F0,n] = Σn(ε2 +Lεn). Note that since Σn
p→ σ2,

we have An,t,Σn = Op(1) and Lεn = op(1) by assumption. Since ε was arbitrary, this
shows Zn = op(1).

Lemma C.5 (Lipschitz Approximation). Let Z ∈ Rd be a random variable. Define
L = {g(Z) ∈ L2(Z) : |g|lip ∨ |g|∞ <∞}. Then L is dense in L2(Z).

Proof. Let 1(Z ∈ A) P -measurable for non-empty A. Define fn(z) = (1 + nd(z, A))−1

with d(z, A) = infy∈A |z − y|2. The function z → d(z, A) is 1-Lipschitz (e.g. reverse
triangle inequality). Then |fn(z)− fn(y)| ≤ n|z− y|2 for any z, y ∈ Rd and |fn|∞ ≤ 1 so
fn(Z) ∈ L. Observe that fn(z) → 1(z ∈ A) pointwise as n → ∞. Then by dominated
convergence

∫
(fn(z) − 1(z ∈ A))2dP (z) → 0, since the integrand converges pointwise

and is dominated by 2 ∈ L1(Z). Then bounded Lipschitz functions are dense in the set of
indicator functions of measurable sets. Next, consider a simple function

∑
k ak1(Z ∈ Ak)

with |ak| < ∞ for all k. If gnk(z) = (1 + nd(z, Ak))
−1 the same argument shows that∑

k akgnk(Z)−
∑

k ak1(Z ∈ Ak)→ 0 in L2(Z). The left hand sum is bounded Lipschitz,
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showing that the Lipschitz functions are dense in the set of simple functions in L2(Z).
The bounded simple functions are dense in L2(Z) (e.g. Folland (1999)), so bounded
Lipschitz functions are dense in L2(Z) by transitivity.

Lemma C.6 (Asymptotic Independence). Consider a probability space (Ω,G, P ) with
σ-algebras F = Fn,0 and Fn,k ⊆ Fn,k+1 ⊆ G for all n ≥ 1 and 0 ≤ k ≤ m − 1. Let
Xn,k be Fn,k-measurable random variables for all n and 1 ≤ k ≤ m. Suppose that
Xn,k|Fn,k−1 ⇒ Lk|F , as in Definition C.3. Then (Xn,1, . . . , Xn,m)|F ⇒ (L1, . . . , Lm)|F ,
with jointly independent limit.

Proof. By Levy continuity, it suffices to show E[eit
′(X1,n,...Xm,n)|F ] →

∏m
k=1E[eitkLk |F ]

for all t ∈ Rm. We work by induction on k. By assumption, E[eitXn,1 |F ]
p→ E[eitL1|F ]

for all t ∈ R. Assume by induction that the conclusion holds for 1 ≤ k ≤ k′ ≤ m. Then

E[ei
∑k′+1
k=1 tkXn,k |F ] = E[ei

∑k′
k=1 tkXn,kE[eitk′+1Xn,k′+1|Fn,k′ ]|F ]

= E[ei
∑k′
k=1 tkXn,k(E[eitk′+1Xn,k′+1|Fn,k′ ]− E[eitk′+1Lk′+1|F ])|F ]

+ E[eitk′+1Lk′+1|F ]E[ei
∑k′
k=1 tkXn,k |F ] =

k′+1∏
k=1

E[eitk′+1Lk′+1 |F ] + op(1)

The first equality is by tower law and our measurability and increasing σ-algebra assump-
tion. For the final equality, note that |ei

∑k′
k=1 tkXn,k(E[eitk′+1Xn,k′+1 |Fn,k′ ]−E[eitk′+1Lk′+1 |F ])| ≤

|E[eitk′+1Xn,k′+1|Fn,k′ ] − E[eitk′+1Lk′+1|F ]| p→ 0. Then the first term in the sum above is
op(1) since the integrand converges in probability and is bounded, hence UI. The final
equality also uses our inductive hypothesis. This finishes the proof.

Lemma C.7 (LLN). Consider An = n−1
∑

g∈Gn ug, with Gn a collection of disjoint
subsets of [n]. Let (Fn)n≥1 be σ-algebras such that Gn is Fn-measurable, E[ug|Fn] = 0,
and for all g 6= g′ ∈ Gn ug ⊥⊥ ug′ |Fn. If n−1

∑
g∈Gn E[|ug|1(|ug| > cn)|Fn]

p→ 0 for
cn = ω(1), cn = o(n1/2), then An

p→ 0.

Proof. By disjointness |Gn| ≤ n. Fix an indexing Gn = {gs : 1 ≤ s ≤ n}, possibly with
gs = ∅ for some s. Define ūsn = us1(|us| ≤ cn) and µ̄sn = E[us1(|us| ≤ cn)|Fn]. Expand

1

n

∑
g∈Gn

ug =
1

n

n∑
s=1

us =
1

n

n∑
s=1

[(us − ūsn) + (ūsn − µ̄sn) + µ̄sn] = Tn1 + Tn2 + Tn3

Observe that E[|Tn1||Fn] ≤ (1/n)
∑n

s=1E[|us|1(|us| > cn)|Fn] = op(1) by assump-
tion. Then Tn1 = op(1) by conditional Markov (Lemma C.2). Next consider Tn2.
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Note that by definition E[ūsn − µ̄sn|Fn] = 0 for each 1 ≤ s ≤ n. Note that for
s 6= s′ Cov(ūsn, ūs′n|Fn) = 0 by the conditional independence assumption. Then
Var(Tn2|Fn) = n−2

∑n
s=1 Var(ūsn|Fn) ≤ n−2

∑n
s=1E[ū2

sn|Fn] ≤ n−1c2
n = o(1), so that

Tn2 = op(1) by conditional Chebyshev. Finally, since E[us|Fn] = 0, we have µ̄sn =

−E[us1(|us| > cn)|Fn]. Then E[|Tn3||Fn] ≤ (1/n)
∑n

s=1E[|us|1(|us| > cn)|Fn] = op(1),
so that Tn3 = op(1) by conditional Markov as before. This finishes the proof.

Lemma C.8. Suppose E[|X|p] <∞ for p > 0. Then maxni=1 |Xi| = op(n
1/p).

Proof. For ε > 0 we have P (maxni=1 |Xi| > εn1/p) ≤ nP (|Xi| > εn1/p) = nP (|Xi|p >
εpn) ≤ n(εpn)−1E[|Xi|p1(|Xi|p > εpn)] . E[|Xi|p1(|Xi|p > εpn)]→ 0. The first inequal-
ity by union bound, the equality by monotonicity of x → xp. The second inequality is
Markov’s, and the final statement by dominated convergence, since E[|Xi|p] <∞.

Lemma C.9 (Random Partitions). Let Gn = {gs}ms=1 a random collection of disjoint
subsets of [n]. Let variables ((τs)s,W1:n, π) jointly independent for some random elements
π and (τs)

m
s=1. Let hi = h(Wi) for a fixed measurable function h and suppose that the

partition Gn is Fn-measurable for Fn = σ(h1:n, π). Then for s 6= r and measurable Fs, Fr,
we have Fs((Wi)i∈gs , τs) ⊥⊥ Fr((Wi)i∈gr , τr)|Fn.

Proof. Since Fs, Fr are arbitrary, it suffices to show E[FsFr|Fn] = E[Fs|Fn]E[Fs|Fn].
Denote WI = (Wi)i∈I and similarly for hI . Then Fs =

∑
I∈2[n] 1(gs = I)Fs(WI , τs). We

claim that it suffices to show

E[Fs(WI , τs)Fr(WJ , τr)|Fn] = E[Fs(WI , τs)|Fn]E[Fr(WJ , τr)|Fn]

for all disjoint I ∩ J = ∅. To see this, note that in this case by measurability of Gn with
respect to Fn and disjointness of the groups we would have

E[FsFr|Fn] = E

∑
I∈2[n]

∑
J∈2[n]

1(gs = I)1(gr = J)Fs(WI , τs)Fr(WJ , τr)|Fn


=

∑
I,J∈2[n]

I∩J=∅

1(gs = I)1(gr = J)E[Fs(WI , τs)|Fn]E[Fr(WJ , τr)|Fn] = E[Fs|Fn]E[Fr|Fn]

Then consider such I∩J = ∅. Note the fact (1) if (A,B) ⊥⊥ C then A ⊥⊥ C|B. By apply-
ing (1) withA = (WI , τs,WJ , τr), B = h1:n and C = π, we have E[Fs(WI , τs)Fr(WJ , τr)|Fn] =

E[Fs(WI , τs)Fr(WJ , τr)|h1:n]. Then it suffices to show that (a) (WI , τs) ⊥⊥ (WJ , τr)|h1:n.
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By fact (1) to show (a) it suffices to prove (b) (WI , τs, hI) ⊥⊥ (WJ , τr)|hIc . By fact (1)
again, it suffices to show (c) (WI , τs, hI) ⊥⊥ (WJ , τr, hIc). This is true by disjointness
and joint independence of the (τs)s, which finishes the proof.

Lemma C.10 (Design Properties). Let D1:n ∼ Loc(ψn, pn). Denote group random-
ization variables τ d = (τ da,s)a,s, jointly independent with (τ da,s,`)

ka
`=1 ∼ CR(qa/ka) for

1 ≤ s ≤ n− 1 and remainder group (τ da,n,`)
ka
`=1 ∼ SRS(qa/ka). Let (Fn)n≥0 a sequence of

σ-algebras with Gn ⊆ Fn and Fn ⊥⊥ τ d. Then the following hold

(i) For each i ∈ [n] we have E[Di|Fn] =
∑|Ln|

a=1

∑n
s=1 1(i ∈ ga,s) · pa. In particular,

E[Di1(i ∈ ga,s)|Fn] = 1(i ∈ ga,s) · pa.

(ii) For 1 ≤ i ≤ n and 1 ≤ s ≤ n we have Var(Di|Fn)1(i ∈ ga,s) = pa(1−pa)1(i ∈ ga,s).
For 1 ≤ i, j ≤ n distinct indices and 1 ≤ s ≤ n− 1

Cov(Di, Dj|Fn)1(i, j ∈ ga,s) = −qa(ka − qa)
k2
a(ka − 1)

1(i, j ∈ ga,s)

In particular, |Cov(Di, Dj|Fn)1(i, j ∈ ga,s)| ≤ k−1
a 1(i, j ∈ ga,s)1(s 6= n). More-

over, Cov(Di, Dj|Fn)1(g(i) 6= g(j)) = 0.

Proof. For the first statement, note that

Di =

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

Di1(i = ga,s,l) =

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

τ da,s,`1(i = ga,s,l)

Then since Gn ∈ Fn and τ da,s,` ⊥⊥ Fn we have

E[Di|Fn] =

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

E[1(i = ga,s,`)τ
d
a,s,`|Fn] =

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

1(i = ga,s,`)E[τ da,s,`|Fn]

=

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

1(i = ga,s,`)E[τ da,s,`] =

|Ln|∑
a=1

n∑
s=1

ka∑
`=1

1(i = ga,s,`)pa

To finish, note that
∑ka

`=1 1(i = ga,s,`) = 1(i ∈ ga,s) by definition. For (ii), by the
decomposition above and measurability assumption, for 1 ≤ j 6= i ≤ n

Cov(Di, Dj|Fn) =

|Ln|∑
a,a′=1

n∑
s,s′=1

ka∑
`=1

ka′∑
`′=1

1(i = ga,s,`)1(j = ga′,s′,`′) Cov(τ da,s,`, τ
d
a′,s′,`′|Fn)
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By σ-algebra independence and joint independence of groupwise randomizations

Cov(τ da,s,`, τ
d
a′,s′,`′ |Fn) = Cov(τ da,s,`, τ

d
a′,s′,`′)

=



0 (a, s) 6= (a′, s′)

pa − p2
a (a, s, `) = (a′, s′, `′)

− qa(ka−qa)
k2a(ka−1)

(a, s) = (a′, s′); ` 6= `′ 1 ≤ s < n

0 (a, s) = (a′, s′); ` 6= `′ s = n

The third line follows since by definition of CR(qa/ka), for (a, s) = (a′, s′) we have

Cov(τ da,s,`, τ
d
a′,s′,`′) = P (τ da,s,` = τ da,s,`′ = 1)− (qa/ka)

2 =

(
ka
qa

)−1(
ka − 2

qa − 2

)
− (qa/ka)

2

=
qa(qa − 1)

ka(ka − 1)
− (qa/ka)

2 = −qa(ka − qa)
k2
a(ka − 1)

The bounds follow by inspection.
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